K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

b) Ta có DF // BC (cmt) hay DI // BE; D là trung điểm của AD ⇒ I là trung điểm của AE và DI = BE/2

Trong ΔAEC có IF là đường trung bình nên IF = EC/2 mà EC = EB (gt) ⇒ IF = ID hay I là trung điểm của DF.

10 tháng 12 2020

Bạn vẽ hình giúp mình nhé!

a. Cm: DFEH là hình thang cân

Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.

\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\) 

Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)

\(\Rightarrow\)DE là đường trung bình trong tam giác ABC

\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)

Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC

\(\Rightarrow\) DF//BC

\(\Rightarrow\) Tứ giác DFEH là hình thang (3)

Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.

b. Cm: I là trung điểm của DF

Ta có: DFEH là hình thang cân

\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)

Mà DE//AC \(\Rightarrow\) DE//AF

\(\Rightarrow\)Tứ giác AFED là hình bình hành

Mà \(I=DF\cap AE\)

\(\Rightarrow\) I là trung điểm của DF

 

1 tháng 12 2016

a)xét tam giác ABC có AD=DB, AE=EC => DE là đg` TB => DE//BC=> DE//BF
và DE=1/2BC=> DE= BF => BDEF là hbh

b) DE//BC => DE//KF => DEFK là hình thang(1)
DE//BC => DEF = EFC(SLT)
BDEF là hbh BD//EF => DBC=EFC (đồng vị) => DEF = DBC
DE//BC => EDK=DKB(SLT)
Xét tam giác ABK vg tại K có D là TĐ của AB=> KD là trung tuyến => KD=1/2AB=BD=> tam giác BDK cân tại D => DBC=DKB
=> KDE = DEF(2)
Từ (1) và (2) => DEFK là hình thang cân

25 tháng 2 2020

a) Xét tứ giác AMDN, ta có:

^A = ^N = ^M = 90o (gt)

Vậy tứ giác AMDN là hình chữ nhật.

b) *Xét △ABD, ta có:

K là trung điểm BD (gt)

I là trung điểm AD (gt)

⇒ KI là đường trung bình của △ABD.

⇒ KI // AB và KI = 12

AB. (1)

*Ta có:

DN ⊥ AC (gt)

AB ⊥ AC (△ABC vuông tại A)

⇒ DN // AB. (2)

Từ (1) và (2) suy ra KI // DN

*Xét △v ABC, ta có:

BD = CD (gt)

⇒ AD là đường trung tuyến

⇒ AD = BD = 12

AC

⇒ △ABD cân tại D

Mà DM ⊥ AB

⇒ DM là đường cao đồng thời là đường trung tuyến

⇒ MA = MB

*Ta có:

MA = 12

AB (cmt)

KI = 12

AB (cmt)

⇒MA = KI

Mà MA = DN (AMDN là hình chữ nhật)

Nên KI = DN

*Ta có:

KI // DN (cmt)

KI = DN (cmt)

Vậy INDK là hình bình hành

c) *Ta có:

KI //AM (KI // AB)

DM ⊥ AM (gt)

⇒KI ⊥ DM

*Xét tứ giác DIMK, ta có:

KI ⊥ DM (cmt)

Vậy DIMK là hình thoi.

d) Xét hình chữ nhật AMDN, ta có:

MN, AD là hai đường chéo

Mà I là trung điểm AD (gt)

Nên I là trung điểm MN

Vậy M, N đối xứng với nhau qua I.

15 tháng 10 2018

a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).

Vậy thì AE = FD (tính chất hình bình hành)

b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.

Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.

Vậy E đối xứng với F qua I.