Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ ạ.
a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)
Mà \(\widehat{A}:chung\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)
hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)
\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)
a, Ta có:
ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.⇒⇒ DE//AE
Xét tam giác ADE và ABC có:
ADAB=AEACADAB=AEAC
ˆDAE=ˆBACDAE^=BAC^
⇒⇒ Tam giác ADF đồng dạng với tam giác ABC
Đọc tiếp
a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)
=> MN // BC (Ta lét đảo)
b, Vì MN // BC
Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>ΔADE\(\sim\)ΔABC
b: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC
a) Áp dụng định lý Thales trong tam giác ABC, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)
b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.