Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(BC^2=AB^2+AC^2=6^2+8^2=10^2\Leftrightarrow BC=10\)
b)
a) Áp dụng định lý Py-ta-go: BC2=AB2+AC2=82+62=64+36=100 \(\Rightarrow\)BC=10
b) Xét tam giác ABC và tam giác ADC:BAC^=DAC^=90o; AB=AD; AC chung \(\Rightarrow\)tam giác ABC=ADC (2 cạnh góc vuông) \(\Rightarrow\)BC=DC
Xét tam giác ABE và ADE: BAE^=DAE^=90o; AB=AD; AE chung \(\Rightarrow\)tam giác ABE=ADE \(\Rightarrow\)BE=DE
Xét tam giác BEC và DEC: BC=DC; BE=DE; EC chung \(\Rightarrow\)tam giác BEC=DEC (cạnh_cạnh_cạnh)
c) Sorry bn, câu này mk ko bít làm T_T
a) Áp dụng định lý Py-ta-go: BC2= AB2+AC2= 82+62= 64+36= 100 \(\Rightarrow\)BC=10
b) Xét tam giác
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.