K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

`a)` 

Có `Delta ABC` cân tại `A(g t)`

`=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

Xét `Delta BEC` và `Delta CDB` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`

`=>Delta BEC=Delta CDB(c.h-g.n)`

`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )

`b)`

Có `Delta BEC=Delta CDB(cmt)`

`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )

`=>Delta BOC` cân tại `O`

`=>OB=OC`(dpcm)

Xét `Delta OEB` và `Delta ODC` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`

`=>Delta OEB=Delta ODC(c.h-g.n)`

`=>OE=OD`( 2 cạnh tương ứng )(dpcm)

`c)`

Có `Delta ABC` cân tại `A(g t)`

`=>AB=AC`

`=>A in ` trung trực của `Delta ABC(1)`

Có `OB=OC(cmt)`

`=>O in` trung trực của `Delta ABC(2)`

Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`

mà `Delta ABC` cân tại `A` 

Nên `OA` là phân giác `hat(BAC)` (dpcm)

24 tháng 12 2016

a) t/g ABC cân tại A

=> ABC = ACB ( tính chất tam giác cân)

Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:

BC là cạnh chung

DCB = EBC (cmt)

Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) t/g DCB = t/g EBC (câu a)

=> CD = BE (2 cạnh tương ứng)

DBC = ECB (2 góc tương ứng)

Mà ABC = ACB (câu a)

=> ABC - DBC = ACB - ECB

=> ABD = ACE

Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:

BE = CD (cmt)

EBO = DCO (cmt)

Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)

=> OB = OC (2 cạnh tương ứng) (1)

OE = OD (2 cạnh tương ứng) (2)

Từ (1) và (2) => đpcm

c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)

=> OAC = OAB (2 góc tương ứng)

=> AO là phân giác CAB (đpcm)

24 tháng 12 2016

A B C E D O

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (gt)

Góc A chung

=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (cm trên); AC = AB (gt)

=> DC = EB

Xét ΔEOB và ΔDOC có:

góc ABD = ACE (cm trên)

EB = DC (cm trên)

góc OEB = ODC (= 90)

=> ΔEOB = ΔDOC (g.c.g)

=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )

c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )

Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:

OE = DO ( cm trên )

AE = AD (câu b)

=> ΔAOE = ΔAOD ( cạnh góc vuông )

=> góc OAE = OAD ( 2 góc tương ứng )

Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.

Chúc học tốt Cathy Trang

 

24 tháng 3 2020

A) \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ

       \(BA=CA\left(GT\right)\)

  \(\widehat{A}\)LÀ GÓC CHUNG

=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )

=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )

B)  VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)

=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG ) 

MÀ \(BE+EA=AB\)

    \(CD+DA=AC\)

MÀ AB = AC (CMT);  DA = EA (CMT)

=> BE = CD

XÉT \(\Delta OEB\)\(\Delta ODC\)

\(\widehat{BEO}=\widehat{CDO}=90^o\)

\(EB=DC\left(CMT\right)\)

 \(\widehat{EBO}=\widehat{DCO}\)

=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)

24 tháng 3 2020

C) VÌ  \(\Delta OEB=\Delta ODC\left(CMT\right)\)

=> OE = OD

XÉT \(\Delta AEO\)\(\Delta ADO\)

\(AE=AD\left(CMT\right)\)

\(\widehat{AEO}=\widehat{ADO}=90^o\)

OE = OD (CMT)

=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)

=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG

MÀ AO ẰM GIỮA AE VÀ AD

=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)

HAY  AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

3 tháng 12 2015


c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC

1 tháng 2 2019

A B C D E H 1 2 3 4

GT tam giác ABC cân 

\(\widehat{A}< 90^o\)

\(BD\perp AC\left(D\in AC\right)\)

\(CE\perp AB\left(E\in AB\right)\)

BD và CE cắt nhau tại H

KL : BD = CD

tam giác BHC cân

AH là đường trung trực của BC

a) Xét tam giác BDC và tam giác CEB có

\(\widehat{BDC}=\widehat{CEB}=90^o\)

BC cạnh chung

\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )

=> tam giác BDC = tam giác CEB  (g-c-g)

=> BD = CE ( 2 cạnh tương ứng )

b) Vì tam giác ABC là tam giác cân

=> \(\widehat{B}=\widehat{C}\)

Vì \(\widehat{B}=\widehat{C}\)

=> tam giác BHC cân

c) Kẻ AH

chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v 

1 tháng 2 2019

Mình cần viết GT-KL 

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE