K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Áp dụng định lý Pytago vào tam giác ABC vuông tại A, ta có:

A B 2   +   A C 2   =   B C 2 ⇔ 15 2   +   20 2   =   B C 2   ⇒ B C   =   25

Ta có: S A B C = 1 2 .AB.AC = 1 2 .AH.BC  ⇒ A H = A B . A C B C = 15.20 25 = 12

Áp dụng định lý Pytago trong tam giác AHB vuông tại H, ta có:

A B 2   =   A H 2   +   H B 2 ⇔ 15 2   =   12 2   +   H B 2 ⇒ H B 2   =   81   = >   H B   =   9 ⇒ H C   =   B C   –   H B   =   25   –   9   =   16

Vì AD là phân giác của tam giác ABH nên:  A B A H = B D D H ⇔ A B A H = B H − D H D H

⇔ 15 12 = 9 − D H D H ó 15DH = 108 – 12DH ó DH = 4cm

Đáp án: A

30 tháng 10 2018

Áp dụng định lý Pytago vào tam giác ABC vuông tại A, ta có:

A B 2   +   A C 2   =   B C 2   ⇔ 15 2   +   20 2   =   B C 2   ⇒ B C   =   25

Ta có: S A B C = 1 2 .AB.AC = 1 2 .AH.BC  ⇒ A H = A B . A C B C = 15.20 25 = 12

Áp dụng định lý Pytago trong tam giác AHB vuông tại H, ta có:

A B 2   =   A H 2   +   H B 2 ⇔ 15 2   =   12 2   +   H B 2 ⇒   H B 2   =   81 ⇒ H B   =   9   ⇒ H C   =   B C   –   H B   =   25   –   9   =   16

Vì AE là phân giác của tam giác CAH nên:  A C A H = C E E H ⇔ A C A H = C H − H E E H

ó 20 12 = − H E H E  ó 20HE = 12(16 – HE) ó 20HE + 12HE = 12.16

ó 32HE = 192 ó HE = 6(cm)

Đáp án: B

26 tháng 6 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng n: Đoạn thẳng [A, H] Đoạn thẳng g_1: Đoạn thẳng [B, E] Đoạn thẳng i_1: Đoạn thẳng [A, F] Đoạn thẳng j_1: Đoạn thẳng [D, F] Đoạn thẳng k_1: Đoạn thẳng [A, G] A = (-0.43, -5.14) A = (-0.43, -5.14) A = (-0.43, -5.14) C = (21, -5.05) C = (21, -5.05) C = (21, -5.05) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i

Cô hướng dẫn nhé

a) \(\Delta DEC\sim\Delta AEF\left(g-g\right)\)

b) Từ định lý Pi-ta-go ta tìm được BC = 5 cm.

\(\Delta ABH\sim\Delta CBA\left(g-g\right)\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}=\frac{BH}{BA}\Rightarrow\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)

Vậy thì AH = 2,4 cm, BH = 1,8 cm. Khi đó BD - BH + HD = BH + AH = 2,4 + 1,8 = 4,2 cm.

\(S_{ABD}=\frac{1}{2}.AH.BD=\frac{1}{2}.2,4.4,2=5.04\left(cm^2\right)\)

c) Ta cm được AG là phân giác, từ đó suy ra \(\frac{GB}{GC}=\frac{AB}{AC}\) (TC tia phân giác)

Mà \(\frac{AB}{AC}=\frac{AH}{HC}=\frac{HD}{HC}\) (TC tam giác đồng dạng)

Vậy \(\frac{GB}{GC}=\frac{HD}{HC}\)

30 tháng 4 2017

a, Xét tg ABC và tg ABH:

H=B=90

 góc chung

=> tg ABC đồng dạng tg ABH

b, Vì tg ABC đồng dạng với tg ABH.

Nên: AB/AH=AC/AB

=>AB^2=AH.AC

=>AB^2=4.13

=>AB=7,2cm

c, Hình như đề sai.

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho