Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hướng giải:
a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF)
b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a
kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)
c) cm BFKC là hình chữ nhật
(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song
- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật)
Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG)
d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)
Có chung điểm I => HI // EI (// OC) hay HK // EI

a) Ta có D đối xứng vs a qua O (gt)
=> O là trung điểm của AD
Xét tứ giác ABCD có
BC cắt AD tại O
Mặt khác ta có O là trung điểm của BC
O là trung điểm của AD
nên tứ giác ABCD là hình bình hành
Xét hình bình hành ABCD có góc A = 900
=> Hình bình hànhABCD là hình chữ nhật
b, Xét tam giác AED có
AH = HE
AO = DO
=> HO là đường trung bình của tam giác
=> HO // ED
=> góc H bằng goc E vì đồng vị
Mà AH vuông góc vs BC
=> góc H = 90o
=> E bằng 90o
=> AE vuông góc vs ED
Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông
c,Đợi tí mình giải tiếp nhé
a) Ta có: A và D đối xứng với nhau qua O(gt)
⇒O là trung điểm của AD
Xét tứ giác ABDC có:
O là trung điểm của đường chéo BC(gt)
O là trung điểm của đường chéo AD(cmt)
mà \(BC\cap AD=\left\{O\right\}\)
Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90\)độ(ΔCAB cân tại A)
nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)* chứng minh ΔAED vuông
Kẻ EO
Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có
OH là cạnh chung
HA=HE(gt)
Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)
⇒OA=OE(hai cạnh tương ứng)
mà \(OA=\frac{AD}{2}\)(do O là trung điểm của AD)
nên \(OE=\frac{AD}{2}\)
Xét ΔAED có:
OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)
mà \(OE=\frac{AD}{2}\)(cmt)
nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
* chứng minh CE⊥BE
Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)
⇒\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)
mà AO=OE(cmt)
nên \(EO=\frac{BC}{2}\)
Xét ΔCEB có:
EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)
mà \(EO=\frac{BC}{2}\)(cmt)
nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
hay \(\widehat{CEB}=90\) độ
⇒CE⊥BE(đpcm)
d.
Dễ dàng chứng minh AOMF là hcn (tứ giác 3 góc vuông) =>AM=FO và AM, FO cắt nhau tại trung điểm I của mỗi đường
\(=IA=IM=IF=IO\)
AH là đường cao nên tam giác AHM vuông tại H =>HI là trung tuyến ứng với cạnh huyền
\(\Rightarrow HI=\frac12AM=IA=IM\)
\(\Rightarrow HI=IF=IO\)
=>Tam giác OHF vuông tại H (trung tuyến bằng 1 nửa cạnh tương ứng hạ xuống)
=>OH⊥PF (1)
Do MF||AC (cùng vuông góc AB) và M là trung điểm BC nên F là trung điểm AB
=>OF là đường trung bình tam giác ABC =>OF||BC (2)
Do F là trung điểm AB và tam giác AHB vuông tại H (gt) nên HF là trung tuyến ứng với cạnh huyền
=>HF=AF=BF
Mà OM=AF (AOMF là hcn theo dòng đầu) =>OM=HF (3)
Từ (2),(3) =>OMHF là hình thang cân =>∠MOF=∠HFO
=>ΔPFO cân tại P (hai góc đáy bằng nhau)
Mà I là trung điểm OF =>PI là trung tuyến đồng thời là đường cao của tam giác PFO (4)
Tứ giác AOMF là hcn nên ∠FMO=90 độ =>FM⊥OP (5)
Từ (1),(4),(5) =>3 đường thẳng FM, OH, PI là 3 đường cao của tam giác OPF
=>3 đường thẳng đã cho đồng quy