K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: BC=10cm

=>AH=6*8/10=4,8cm

b: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM

Xét ΔOAM và ΔOHM có

OA=OH

MA=MH

OM chung

Do đó: ΔOAM=ΔOHM

=>góc OHM=90 độ

=>MH là tiếp tuyến của (O)

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

18 tháng 2 2020

A B C N S H P M D

Dễ thấy D nằm giữa M và H

Ta có : AD là tia phân giác góc BAC \(\Rightarrow\widehat{PAB}=\widehat{PAC}=\frac{1}{2}\widehat{BAC}=45^o\)

Mà \(\widehat{BAP}=\frac{1}{2}sđ\widebat{BP}=45^o\)\(\widehat{PAC}=\frac{1}{2}sđ\widebat{PC}=45^o\)

\(\Rightarrow sđ\widebat{BP}=sđ\widebat{PC}=90^o\)

Ta có : AM là đường trung tuyến nên M là tâm đường tròn ngoại tiếp tam giác ABC

\(\Rightarrow\widehat{BMP}=sđ\widebat{BP}=90^o\)

\(\Rightarrow BM\perp MP\)hay \(BC\perp MP\)( 1 )

Mà AH là đường cao tam giác ABC nên \(BC\perp AH\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra AH // MP

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

 

20 tháng 9 2021
Tui ko bt lm đâu há há

a: Xét (E) có

EH là bán kính

AH vuông góc EH tại H

Do đó: AH là tiếp tuyến của (E)

b: Xét (E) co

ΔHMB nội tiếp

HB là đường kính

Do dó: ΔHMB vuông tại M

Xét (I) có

ΔCNH nội tiếp

CH là đường kính

Do đó: ΔCNH vuông tại N

Xét tứ giácc AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)FB tại C

=>EC\(\perp\)CF tại C

=>ΔECF vuông tại C

Xét (O) có

\(\widehat{ICA}\) là góc tạo bởi tiếp tuyến CI và dây cung CA

\(\widehat{CBA}\) là góc nội tiếp chắn cung CA

Do đó: \(\widehat{ICA}=\widehat{CBA}\)

mà \(\widehat{CBA}=\widehat{AED}\left(=90^0-\widehat{CAB}\right)\)

 và \(\widehat{AED}=\widehat{IEC}\)(hai góc đối đỉnh)

nên \(\widehat{ICA}=\widehat{IEC}\)

=>\(\widehat{ICE}=\widehat{IEC}\)

=>IE=IC

Ta có: \(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔCFE vuông tại C)

\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)

mà \(\widehat{IEC}=\widehat{ICE}\)

nên \(\widehat{IFC}=\widehat{ICF}\)

=>IF=IC

mà IE=IC

nên IE=IF

=>I là trung điểm của EF

b: Vì ΔCFE vuông tại C

nên ΔCFE nội tiếp đường tròn đường kính EF

=>ΔCFE nội tiếp (I)

Xét (I) có

IC là bán kính

OC\(\perp\)CI tại C

Do đó: OC là tiếp tuyến của (I)

=>OC là tiếp tuyến của đường tròn ngoại tiếp ΔECF