K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

24 tháng 10 2016

câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )

OA+ OB + OC = OA'+ OB' + OC'

<=> OA - OA' + OB - OB' + OC - OC' = 0

<=> A'A + B'B + C'C = 0

<=> 2 ( BA + CB + AC ) = 0

<=> 2 ( CB + BA + AC ) = 0

<=> 2 ( CA + AC ) = 0

<=> 0 = 0 ( luôn đúng )

 

 

24 tháng 10 2016

câu 1 ( các kí hiệu vecto b cx tự viết nhá )

VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)

19 tháng 5 2021

\(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)

\(=\overrightarrow{OA}+\overrightarrow{AA'}+\overrightarrow{OB}+\overrightarrow{BB'}+\overrightarrow{OC}+\overrightarrow{CC'}\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\left(\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{AC}\right)\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\overrightarrow{CC}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) (đpcm)

 

 

18 tháng 10 2021

undefined

NV
31 tháng 8 2020

G là trung điểm BD \(\Rightarrow\overrightarrow{BG}=\overrightarrow{GD}\)

Gọi M là trung điểm BC \(\Rightarrow\) GM là đường trung bình tam giác BCD

\(\Rightarrow\overrightarrow{GM}=\frac{1}{2}\overrightarrow{DC}\Rightarrow\overrightarrow{DC}=\overrightarrow{AG}\)

\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{DG}=\overrightarrow{AG}+\overrightarrow{DA}+\overrightarrow{AG}=2\overrightarrow{AG}-\overrightarrow{AD}=2\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AD}+\overrightarrow{AG}=\overrightarrow{a}+\overrightarrow{b}\)