K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

Mọi người giúp mik vs ạ

 

21 tháng 12 2022

sáng vừa làm xong bài này dài lắm với lại lm lâu nx

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

a: Xét ΔABM và ΔADM có

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

a) Xét ΔABM và ΔACM có

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))

AM chung

Do đó: ΔABM=ΔACM(c-g-c)

b) Sửa đề: EM=AC

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

hay AM\(\perp\)BC

Xét tứ giác AMCE có 

I là trung điểm của đường chéo AC(gt)

I là trung điểm của đường chéo EM(gt)

Do đó: AMCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCE có \(\widehat{AMC}=90^0\)(cmt)

nên AMCE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AC=ME(Hai đường chéo)

a: Xét ΔABD và ΔAMD có

AB=AM

góc BAD=góc MAD

AD chung

Do đó; ΔABD=ΔAMD

b: Xét ΔDBN và ΔDMC có

góc DBN=góc DMC

DB=DM

góc BDN=góc MDC

Do đó; ΔDBN=ΔDMC

=>BN=MC

c: Xét ΔANC có AB/BN=AM/MC

nên BM//CN

21 tháng 12 2020

bạn tự vẽ hình nhé

vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)

a) xét ΔABD và ΔAMD, có:

AM=AB (gt)

\(\widehat{BAD}=\widehat{MAD}\) (cmt)

AD chung

⇒ ΔABD = ΔAMD (c.g.c) (đpcm)

b) Từ ΔABD = ΔAMD (cmt)

    ⇒ BD=DM( 2 cạnh t/ứng) (đpcm)

       \(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)

c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.

vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)

vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ ​​\(\widehat{BDN}\)​ =\(\widehat{MDC}\)

Xét Δ BDN và ΔMDC, có:

\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)

BD=DM (cmt)

\(\widehat{DBN}=\widehat{DMC}\) (cmt)

⇒Δ BDN = ΔMDC (g.c.g) (đpcm)

d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC

mà AB=AM ⇒ AB+BN =AM+MC

                    ⇔AN=AC.⇒ Δ ANC cân tại A.

và AB=AM(gt) ⇒ ΔABM cân tại A

      mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)

    Vì  Δ ANC cân tại A (cmt) 

         AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.

                Mà AD⊥ BM⇒ BM//CN(đpcm)

 

 

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Bổ sung hình để các bạn dễ hình dung:

undefined