K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình như đề bài thiếu nha bạn

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0

c: CA+CB=CB+BD>CD=2CK

=>AC+BC/2>CK

d: Gọi E là giao của BN với CA

Xét ΔCEB có

BA,CN là đường cao

BA cắt CN tạiK

=>K là trực tâm

=>EK vuông góc BC

=<E,K,H thẳng hàng

=>ĐPCM

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại Ma, Chứng minh tam giác ABM = tam giác ACM b, Biết AB = 20cm ; BC =  24cm . Tính MB và AMc, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K Chứng minh tam giac AHK cân tại A . Tính MH2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MDa, Tính BCb,Chứng...
Đọc tiếp

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M

a, Chứng minh tam giác ABM = tam giác ACM 

b, Biết AB = 20cm ; BC =  24cm . Tính MB và AM

c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K 

Chứng minh tam giac AHK cân tại A . Tính MH

2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD

a, Tính BC

b,Chứng minh AB = CD ; AB song song với CD

c,Chứng minh góc BAM > góc CAM 

d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE

3, Chứng minh tổng sau không phải là số nguyên :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)

4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)

 

0
26 tháng 3 2020
  • linhhlin

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

26 tháng 3 2020

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

  Chúc bạn học tốt !

19 tháng 2 2016

Vẽ hình ra nhé bạn

19 tháng 2 2016

bạn cứ giải đi, rồi mình nhìn lại