Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Xét ΔABI và ΔDCI có
AI=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔABI=ΔDCI
Suy ra: AB=CD
XÉT \(\Delta IBA\) VÀ \(\Delta ICD\) CÓ
IB=IC (GT)
IA=ID (GT)
\(\widehat{AIB}=\widehat{DIC}\left(ĐỐI\right)ĐỈNH\)
=>\(\Delta IAB=\Delta ICD\left(CGC\right)\)
=>AB=AC (CTU/0
a: Xét ΔABI và ΔDCI có
IA=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔABI=ΔDCI
Suy ra: \(\widehat{ABI}=\widehat{DCI}\)
mà hai góc này ở vị trí so le trong
nên AB//CD
b: Ta có: AB//CD
mà AB\(\perp\)AC
nên CD\(\perp\)AC
c: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: BC=AD
Xét △ABI và △ACI có :
AB = AC (gt)
BI = CI (do I là trung điểm BC)
AI chung
=> △ABI = △ACI (c-c-c)
Xét △AIC và △DIB có :
AI = DI (gt)
ˆAIC=ˆDIBAIC^=DIB^ (đối đỉnh)
IC = IB
=> △AIC = △DIB (c-g-c)
=> ˆDBI=ˆICADBI^=ICA^ (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AC // BD
Xét △IKB và △IHC có :
ˆIKB=ˆIHC=90OIKB^=IHC^=90O
IB = IC
ˆKIB=ˆCIHKIB^=CIH^ (đối đỉnh)
=> △IKB = △IHC (ch-gn)
=> IK = IH
Xin lỗi vẽ hình lâu lắm bỏ qua nhé
a) Xét tam giác IAB và tam giác IDC có:
IA = ID ( giả thiết )
Góc AIB = Góc DIC (hai góc đối đỉnh)
IB = IC ( I là trung điểm BC)
=> Tam giác IAB = Tam giác IDC (c.g.c)
=> AB = CD (cặp cạnh tương ứng) (đpcm)
b) Xét tam giác IAC và tam giác IDB có:
IA = ID (giả thiết)
Góc AIC = Góc BID (hai góc đối đỉnh)
IB = IC ( I là trung điểm BC)
=> Tam giác IAC = Tam giác IDB (c.g.c)
=> Góc IAC = Góc IDB (cặp góc tương ứng)
Mà hai góc này ở vị trí so le trong
=> AC // BD (đpcm)
a: Xét tứ giác ABDC có
I là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=CD và AB//CD
b: ABDC là hình bình hành
=>BD//AC