Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
a: Ta có: BM//EF
EF\(\perp\)AH
Do đó: AH\(\perp\)BM
Xét ΔAMB có
AH là đường cao
AH là đường phân giác
Do đó: ΔAMB cân tại A
b: Xét ΔAFE có
AH vừa là đường cao, vừa là đường phân giác
Do đó: ΔAFE cân tại A
=>AF=AE
Ta có: AF+FM=AM
AE+EB=AB
mà AF=AE và AM=AB
nên FM=EB
Xét ΔCMB có
D là trung điểm của CB
DF//MB
Do đó: F là trung điểm của CM
=>CF=FM
=>CF=FM=EB
a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.
b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)
Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.
c. Ta thấy tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)
nên AC = DK.
d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)
Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)
Vậy \(\widehat{AME}=\widehat{AEM}\)
Vậy tam giác AME cân tại A.
1) d) Ta có: \(\Delta\)KHC cân tại H
=> HK = CK
=> AB = AC = 2Ck = 2HK
=> AB = 2 HK
Ta có:
Qua H kẻ đường thẳng // với HA cắt AB tại T
Xét \(\Delta\)KHA và \(\Delta\)ATK có:
AK chung
^HKA = ^TAK ( so le trong )
^HAK = ^TKA ( so le trong )
=> \(\Delta\)KHA = \(\Delta\)ATK
=> AT = HK và KT = HA
=> AB = 2HK = 2AT
Khi đó: AH + BK = KT + BK > BT = AB + AT
=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB
Vậy 2 ( AH + BK) > 3AB
2)
a)
- Xét \(\Delta\)ADC và \(\Delta\)ABE có:
AD = AB ( \(\Delta\)ADB cân tại A )
AC = AE ( \(\Delta\)ACE cân tại E)
^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC ; ^BAE = ^BAC + ^CAE = ^BAC + 90o )
=> \(\Delta\)ADC = \(\Delta\)ABE (1)
=> CD = EB
- Gọi P; Q lần lượt là giao điểm của DC và BA và BE
(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)
Xét \(\Delta\)APD và \(\Delta\)PQB
có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB = 180 độ ( tổng 3 góc trong 1 tam giác )
mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh)
=> ^PQB = ^PAD = ^BAD = 90 độ ( \(\Delta\)ABD vuông )
=> DC vuông BE
b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE
Gọi giao điểm của DE và MA là I
Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA (3)
=> DM = AE = AC
Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ
mà ^DAE + ^BAC = 180 độ
=> ^MDA = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM
=> \(\Delta\)ABC = \(\Delta\)DAM
=> ^DAM = ^ABC
=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ
=> M; I; A; H thẳng hàng
=> AH cắt DE tại I
(3) => ID = IE => I là trung điểm của DE
Do vậy AH đi qua trung điểm của DE
a) Xét tứ giác AEBH có
AB//HE(gt)
AE//BH(gt)
Do đó: AEBH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB=HE(Hai cạnh đối trong hình bình hành AEBH)(1)
Xét tứ giác AGHC có
AG//HC(gt)
AC//GH(gt)
Do đó: AGHC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AC=HG(Hai cạnh đối trong hình bình hành)(2)
mà AB=AC(ΔABC cân tại A)(3)
nên từ (1), (2) và (3) suy ra HG=HE
Xét ΔHGE có HG=HE(cmt)
nên ΔHGE cân tại H(Định nghĩa tam giác cân)