Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{t1-1}{9}=\frac{t2-2}{8}=...=\frac{t9-9}{1}=\frac{t1-1+t2-2+...+t9-9}{9+8+...+1}\)
\(=\frac{t1+t2+...+t9-1-2-...-9}{45}=\frac{90-1-2-...-9}{45}=\frac{45}{45}=1\)
\(\Rightarrow\frac{t1-1}{9}=1\Rightarrow t1=1.9+1=10\)
\(t2,t3,...,t9\)bạn làm tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
theo mình thì tách cái hiệu trên ra sẽ bằng (t1 +t2+....t9) - (1+2+3...+9) / (9+8+7+......+1)
tổng đầu bằng 90 - 45/45 = 1
Ta có thể cho rằng các phân số đó bằng 1
Vậy \(\left\{t1;t2;...;t9\right\}=9+1=8+2=7+3=....=10\)\(10\)
Vậy tất cả các số đều bằng 10, đáp ứng\(10+10+10+10+10+10+10+10+10\)\(=90\)
Chúc bạn học tốt!!!!!!!!!!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(3|x-0,5|-2x=x+0,4.\)
\(\Leftrightarrow3|x-0,5|=3x+0,4\)
\(\Leftrightarrow|x-0,5|=x+0,4\)
\(\Rightarrow\hept{\begin{cases}x-0,5=-\left(x+0,4\right)\\x-0,5=x+0,4\end{cases}}\) => x không tồn tại ( ở đay có chút sơ suất ngoặc nhọn đổi thành ngoặc vuông)
b, \(\frac{5}{6}.|\frac{3}{8}-x|-\left(\frac{-7}{8}+\frac{11}{12}-\frac{5}{6}\right)=1\)
,<=> \(|\frac{3}{8}-x|-\left(\frac{-7}{8}+\frac{1}{12}\right)=\frac{6}{5}\)
<=>\(|\frac{3}{8}-x|-\frac{-19}{24}=\frac{6}{5}\)
<=>\(|\frac{3}{8}-x|=\frac{49}{120}\)
=>\(\orbr{\begin{cases}\frac{3}{8}-x=\frac{49}{120}\\\frac{3}{8}-x=\frac{-49}{120}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{30}\\x=\frac{47}{60}\end{cases}}\)
Phần a mình chưa chắc chắn
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)
\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)
\(=\frac{50-2-6+3}{9}=5\)
Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)
\(\frac{3y-6}{9}=5\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z=23\)
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Vậy ...