K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 6 2021

\(3T=\left(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\right)\)

\(=x^2-6x+19-\left(x^2-6x+10\right)=9\)

\(\Rightarrow T=3\)

7 tháng 7 2016

bạn kiểm tra lại biểu thức A đi bạn

 

8 tháng 7 2016

Đặt \(a=\sqrt{x^2-6x+19},a\ge0\) ; \(b=\sqrt{x^2-6x+10},b\ge0\)

\(\Rightarrow\begin{cases}a-b=3\\a^2-b^2=9\end{cases}\)  \(\Rightarrow A=a+b=3\)

8 tháng 7 2016

Các biểu thức dưới dấu căn đều dương

Đat  \(\sqrt{x^2-6x+19}=a\ge0,\sqrt{x^2-6x+10}=b\ge0\)

Ta có  \(a-b=3\)và \(a^2-b^2=9\)

\(\Rightarrow a+b=9\)

Do \(a+b>a-b\) nên  \(b>0\)\(\Leftrightarrow a>0\)

Vậy giá trị của biểu thức A  = 9

13 tháng 11 2018

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3

5 tháng 10 2016

(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3

=>

\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3