K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 7 2016
Đặt \(a=\sqrt{x^2-6x+19},a\ge0\) ; \(b=\sqrt{x^2-6x+10},b\ge0\)
\(\Rightarrow\begin{cases}a-b=3\\a^2-b^2=9\end{cases}\) \(\Rightarrow A=a+b=3\)
8 tháng 7 2016
Các biểu thức dưới dấu căn đều dương
Đat \(\sqrt{x^2-6x+19}=a\ge0,\sqrt{x^2-6x+10}=b\ge0\)
Ta có \(a-b=3\)và \(a^2-b^2=9\)
\(\Rightarrow a+b=9\)
Do \(a+b>a-b\) nên \(b>0\)\(\Leftrightarrow a>0\)
Vậy giá trị của biểu thức A = 9
ND
0
TD
0
5 tháng 10 2016
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
\(3T=\left(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\right)\)
\(=x^2-6x+19-\left(x^2-6x+10\right)=9\)
\(\Rightarrow T=3\)