Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thầy Nguyễn Việt Lâm ơi! Em nghị giờ đi theo con đường là chỉ cần cm đc
2ab(a+b) + 2bc(b+c) + 2ac(a+c) bé thua hoặc bằng 4c^3 + (a+b)^3
Rồi sử dụng cái tích chất bắc cầu k biết có đc không nữa.
Đơn giản là phân tích bình phương thôi, để loại căn cho dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)
\(\left(x^2+y^2\right)^3+4z^6\ge4x^3y^3+4y^3z^3+4z^3x^3\)
\(\Leftrightarrow x^6+y^6+3x^4y^2+3x^2y^4+4z^6-4x^3y^3-4y^3z^3-4z^3x^3\ge0\)
\(\Leftrightarrow\left(x^6+y^6+4z^6+2x^3y^3-4z^3x^3-4y^3z^3\right)+3\left(x^4y^2-2x^3y^3+x^2y^4\right)\ge0\)
\(\Leftrightarrow\left(x^3+y^3-2z^3\right)^2+3\left(x^2y-xy^2\right)^2\ge0\) (luôn đúng)
Từ \(\sqrt{\left(1+\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=a+b\sqrt{2}+c\sqrt{3}\)
Suy ra \(a=2;b=c=0\)
Cái này phá căn dùng đồng nhất thức nhé cái này mình làm bên học 24 rồi ko muốn làm lại
\(a^2+b^2+c^2=2^2+0+0=4\)
\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu - nhi - a ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
\(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
\(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
\(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.
\(1,\)
Áp dụng BĐT Bunhiacopski:
\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)
Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)
\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)
Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Sử dụng BĐT AM-GM ta có:
\(\sqrt[3]{a\left(b+2c\right)}=\frac{\sqrt[3]{3.3a.\left(b+2c\right)}}{\sqrt[3]{9}}\le\frac{3+3a+b+2c}{3.\sqrt[3]{9}}\)
Tương tự:
\(\sqrt[3]{b\left(c+2a\right)}\le\frac{3+3b+c+2a}{3\sqrt[3]{9}}\)
\(\sqrt[3]{c\left(a+2b\right)}\le\frac{3+3c+a+2b}{3\sqrt[3]{9}}\)
Cộng lại ta có:
\(S\le\frac{9+6\left(a+b+c\right)}{3\sqrt[3]{9}}=\frac{27}{3\sqrt[3]{9}}=3.\sqrt[3]{3}\)
Dấu = xảy ra khi a=b=c=1
\(\Leftrightarrow a+b+c+3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=a+b+c\)
\(\Leftrightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=0\)
với \(\sqrt[3]{a}+\sqrt[3]{b}=0\Leftrightarrow a=-b\Leftrightarrow a^3+b^3=0\)
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
⇔a+b+c+3(3√a+3√b)(3√b+3√c)(3√c+3√a)=a+b+c
⇔3(3√a+3√b)(3√b+3√c)(3√c+3√a)=0
với 3√a+3√b=0⇔a=−b⇔a3+b3=0
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~