\(\sqrt{2x+3}+\sqrt{y+3}=4\)

\(P=\sqrt{x+2}+\sqrt{y+9}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2019

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\\x_1x_2=\frac{\sqrt{3}-3}{3}=\frac{1}{\sqrt{3}}-1\end{matrix}\right.\)

a/

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{1}{\sqrt{3}}\right)^2-2\left(\frac{1}{\sqrt{3}}-1\right)=\frac{7}{3}-\frac{2}{\sqrt{3}}=\frac{7-2\sqrt{3}}{3}\)

b/ \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\frac{7-2\sqrt{3}}{3}}{\frac{\sqrt{3}-3}{3}}=\frac{7-2\sqrt{3}}{\sqrt{3}-3}=\frac{-15-\sqrt{3}}{6}\)

23 tháng 3 2019

thanks bn Nguyễn Việt Lâm nhìu nhá :>>>

2 tháng 6 2015

*đặt a= x1.x2 => a^2=(x1.x2)^2= (3+Căn5)(3- Căn5)=9 - 3.Căn 5 + 3.Căn5 - 5 = 4 => Căn a = căn4 =2

* x1^2 + x2^2= 3 + Căn5 + 3 - Căn5= 9

LẤY MÁY TÍNH BẤM XEM ĐÚNG KHÔNG NHÉ

21 tháng 5 2017

Đề là \(\sqrt{x_1^2+1}\sqrt{x_1^2+1}\)hay là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)

21 tháng 5 2017

làm theo đề là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)

ta có để PT \(x^2-3x+m=0\)có 2 nghiệm phân biệt 

=>\(\Delta=\left(-3\right)^2-4m>0< =>9>4m< =>m< \frac{9}{4}\)

theo Vi-ét

=>\(\hept{\begin{cases}x_1+x_2=3\\x_1.x_2=m\end{cases}}\)(1)

Ta có:

\(\sqrt{x_1^2+1}\sqrt{x_2^2+1}=3\sqrt{3}< =>\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(3\sqrt{3}\right)^2=27\)

\(=>\left(x_1x_2\right)^2+x_2^2+x_1^2+1=27< =>x_1^2x_2^2+\left(x_1+x_2\right)^2-2x_1x_2=26\)

thay (1) vào :\(m^2+9-2m=26< =>m^2-2m-17=0< =>\orbr{\begin{cases}m=1+3\sqrt{2}\\m=1-3\sqrt{2}\end{cases}}\)

Mà \(m< \frac{9}{4}=>m=1-3\sqrt{2}\)

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

NV
3 tháng 3 2020

\(\Delta'=m^2+4m+4-m^2+4=4m+8>0\Rightarrow m>-2\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2-4\end{matrix}\right.\)

Để căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}x_1\ge0\\x_2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2\ge0\end{matrix}\right.\) \(\Rightarrow m\ge2\)

\(P^2=x_1+x_2+2\sqrt{x_1x_2}=2\left(m+2\right)+2\sqrt{m^2-4}=8\Rightarrow P=2\sqrt{2}\)

\(\sqrt{\frac{x_1x_2}{x_1+2x_2+\frac{x^2_2}{x_1}}}=\sqrt{x_1}\Leftrightarrow\frac{x_1x_2}{x_1+2x_2+\frac{x^2_2}{x_1}}=x_1\)

\(\Leftrightarrow x_1x_2=x_1^2+2x_1x_2+x_2^2\Leftrightarrow x_1x_2=\left(x_1+x_2\right)^2\)

\(\Leftrightarrow m^2-4=4\left(m+2\right)^2\Leftrightarrow3m^2+8m+8=0\)

Pt vô nghiệm \(\Rightarrow\) Không tồn tại m thỏa mãn