Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
a) Tìm số tự nhiên x để A=x14+x13+1 là số nguyên tố
b) Chứng minh x4-10x2+27 không là số chính phương
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.