Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(2017^{2016}\equiv1\)(mod 6)
Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)
Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6
Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên
Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)
Vậy \(\text{Σ}n_i^3\)chia 6 dư 1
ta có: \(N=2017^{2016}\)
xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a
đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)
\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)
\(\Rightarrow S-N⋮6\)
=> S và N cùng số dư khi chia cho 6
thấy 2017 chia 6 dư 1
20172016 chia 6 dư 1 => N chia 6 dư 1
=> S chia 6 dư 1
\(S=1^n+2^n+3^n+4^n+5^n+6^n+7^n+8^n\)
\(=\left(2^n+8^n\right)+\left(3^n+7^n\right)+\left(4^n+6^n\right)+1^n+5^n\)
\(=\left(2+8\right)\cdot M+\left(3+7\right)\cdot N+\left(4+6\right)\cdot P+1^n+5^n\)(áp dụng hằng đẳng thức với n lẻ)
\(=10M+10N+10P+1^n+5^n\)
\(=5\left(2M+2N+5^{n-1}\right)+1\) chia 5 dư 1.
Câu 2.
Câu hỏi của hoang the cuong - Toán lớp 8 - Học toán với OnlineMath
Ta giải như sau :
Ta có \(S\left(n\right)+n=2015\)(1)
\(\Rightarrow n< 2015\)(2)
Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)
\(\Rightarrow n\ge2015-28=1987\)(3)
Từ (2) và (3) ta có : \(1987\le n< 2015\)
Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.
Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9
( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )
Do đó ta có:
\(A-S\left(A\right)⋮9\)
\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)
\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)
=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)
Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34
=> \(S\left(A\right)< 34.9=306\)
=> \(S\left(S\left(A\right)\right)< 3.9=27\)
=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)
Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)
=> \(A-7⋮9\)(3)
Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16
=> S(S(S(S(A)))) = 7
:)))) . Bài này thú vị quá! <3
Gọi số tự nhiên N cần tìm là abcdefg . Gọi tổng các chữ số là A .
Ta có : \(1+0+2+3+4+5+6\le A\le9+8+7+6+5+4+3\)hay \(21\le A\le42\)
( Vì không có 2 chữ số nào giống nhau )
Vì tổng các chữ số chia hết cho 7 nên \(A\)thuộc { 21 ; 28 ; 35 ; 42 }
Xét tổng các chữ số là 21 .
Ta cần sắp xếp các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 thành số có 7 chữ số chia hết cho 7 và số đó nhỏ nhất .
Vì đề bài , N là số tự nhiên nhỏ nhất nên ta có số 1023456 .
Thử lại thì thấy \(1023456⋮7\)
Vì thế , không cần xét trường hợp nào nữa .
Vậy số tự nhiên N là \(1023456\)