Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n=2k thì \(n^4+4n=16k^4+16^k\),mỗi số hạng chia hết cho 16 nên tổng đó chia hết cho 16 nên là hợp số
với n=2k+1 thì \(n^4+4n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)
=\(\left(n^2+2^{2k+1}+n.2^{k+1}\right)\left(n^2+2^{2k+1}-n.2^{k+1}\right)\)
=\(\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
Mỗi thừa số đều lớn hơn hoặc bằng 2, nên n^4+4n ngoài chia hết cho 1 và chính nó thì còn chia hết cho 2 thừa số trên===> là hợp số
Với n chẵn thì tổng đó là hợp số vì chia hết cho 2
Với n lẻ thì n = 2k + 1 thì ta có
n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n2 + 22k+1 - n.2k+1)
Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được
Ta có n2 + 22k+1\(\ge\)\(2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}\)
Vì n lẻ và > 1 nên n2 + 22k+1 - n.2k+1 > 1
Vậy số đó là hợp số
Với n chẵn thì tổng đó là hợp số vì chia hết cho 2
Với n lẻ thì n = 2k + 1 thì ta có
n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n2 + 22k+1 - n.2k+1)
Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được
Ta có n2 + 22k+1\ge≥2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}2.n.222k+1=n.2k+1
Vì n lẻ và > 1 nên n2 + 22k+1 - n.2k+1 > 1
Vậy số đó là hợp số
https://olm.vn/hoi-dap/question/997557.html
Mk làm rồi nhé : Ấn vào đây
\(4^n⋮4\)
Nếu n=0 thì:\(4^n=4^0=1\)=> không phải là hợp số
Ta có: n>1 =>4n là hợp số
\(n^4⋮n;n>1\)=>n4 là hợp số
Vậy n4+4n là hợp số
n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.
- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số
- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)
\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)
Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô
Chúc bạn học tốt !!!
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
Muốn pt trên đúng thi cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
m^2-n^2=(m+n)(m-n)
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp
cho tich
Ta có n4+4=n4+2.n2.n+4-4n2=(n2+2)2-(2n)2=(n2-2n+2)(n2+2n+2)
Vì n>1=>(n2-2n+2)>1;(n2+2n+2)>1
=>n4+4 có nhiều hơn 2 ước
=>n4+4 là hợp số