Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)
a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)
a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)
a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)
\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)
Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)
\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)
\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)
\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)
Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)
Vậy số tự nhiên cần tìm là 117
Gọi số cần tìm là a
Ta có a : 8 dư 5 => a + 3 ⋮ 8
a : 10 dư 7 => a + 3 ⋮ 10
a : 15 dư 12 => a + 3 ⋮ 15
a : 20 dư 17 => a + 3 ⋮ 20
=>a + 3\(\in\) BC(8,10,15,20)
8 = 23
10 = 2.5
15 = 3.5
20 = 22.5
BCNN(8,10,15,20) = 23.3.5 = 120
=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}
=> a \(\in\) {-3;117;237;...}
Vì a nhỏ nhất nên a = 117
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797
kéo theo m là UC của 53-5 và 187-11
nên m là UC của 48 và176
48=2^4.3
176=2^4.11
UC của 48 và 176 là 2^4=16 suy ra m = 16
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^