Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng vì tổng các chữ số của A và B như nhau (người ta chỉ đổi chỗ các chữ số)
=> A chia hết cho 3. (2)
Từ (1) và (2) => B chia hết cho 9 => A chia hết cho 9 (3)
Từ (1) và (3) => B chia hết cho 27.
Ta có:
b=3a => b chia hết cho 3 => tổng các chữ số của b chia hết cho 3 mà tổng các chữ số của b= tổng các chữ số của a => a chia hết cho 3. Ta có 3 chia hết cho 3, a chia hết cho 3 nên 3a chia hết cho 9 => b chia hết cho 9 => tổng các chữ số của b chia hết cho 9 => a chia hết cho 9 vì tổng các chữ số của a = tổng các chữ số của b( đpcm)
cho tam giác ABC. Ở phía ngoài tam giác đó vẽ các tam giác vuông cân kaf ABD và ACE
a) Chứng minh CD=BE và CD vuông góc với BE
b) Kẻ đường thẳng đi qua A và vuông góc với BC tại H
chứng minh: Đường thẳng AH đi qua trung điểm của DE
c, Lấy điểm K nằm trong tam giác ABD sao cho góc ABK bằng 300,BA=BK. Chứng minh AK=KD
( chỉ cần giải câu c - đúng k )
a) Vì B chia hết cho 9 nên B cũng chia hết cho 92
=> B chia hết cho 81
b) Vì B chia hết cho 3 mà B chia hết cho 9 ở câu a
nên B chia hết cho 9*3=27
=> B chia hết cho 27
mk k chắc nữa, dốt toán cm lắm
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng tổng các chữ số của A và B như nhau (vì người ta chỉ đổi vị trí).
=> A cũng chia hết cho 3. (2)
Từ 1 và 2 => B chia hết cho 9 => B chia hết cho 9 (3)
Từ 1 và 3 => B chia hết cho 27
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng tổng các chữ số của A và B như nhau (vì người ta chỉ đổi vị trí).
=> A cũng chia hết cho 3. (2)
Từ 1 và 2 => B chia hết cho 9 => B chia hết cho 9 (3)
Từ 1 và 3 => B chia hết cho 27