Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................

Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:
\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)
Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)
Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)
Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8
\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)
\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)
=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)
Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)
=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)
=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)
Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)
dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá
^_^

Làm phần min trước, Max để mai:
Ta chứng minh \(P\ge\frac{18}{25}\).
*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)
*Nếu x khác 0. Xét hiệu hai vế ta thu được:
\(\ge0\)
P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D