Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Cô sy cho 2 số dương x và 1/x.
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}=2}\)Dấu bằng xảy ra khi \(x=\frac{1}{x}\)với x>0 thì x=1.
b). Nhân 2 vế với (-1) Viết BĐT thành: \(-x+\frac{1}{-x}\ge2\). Với x<0 thì -x>0 áp dụng BĐT phần a) cho số -x dương.
Ta có:
\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)
\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)
\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)
Ta lại có:
\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)
\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)
Theo đề bài ta có: (sửa đề luôn)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
a)Dự đoán dấu "=" xảy ra tại \(x=\frac{1}{2}\),hay \(x^2=\frac{1}{4}\).Ta biến đổi như sau:
\(A=\frac{x^2+1}{x}=\frac{x^2+\frac{1}{4}+\frac{3}{4}}{x}=\frac{x^2+\frac{1}{4}}{x}+\frac{3}{4x}\) (1)
Do x > 0 nên \(\frac{x^2+\frac{1}{4}}{x}\ge\frac{2\sqrt{\frac{1}{4}x}}{x}=\frac{2x.\frac{1}{2}}{x}=1\) (BĐT Cô si) (2)
\(0< x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\Rightarrow\frac{3}{4x}\ge\frac{6}{4}=\frac{3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge1+\frac{3}{2}=\frac{5}{2}\) hay \(A_{min}=\frac{5}{2}\Leftrightarrow x=\frac{1}{2}\)
b)Ta có: \(A=\frac{x^2+1}{x}=\frac{x^2}{x}+\frac{1}{x}=x+\frac{1}{x}\)
Dự đoán xảy ra cực trị tại x = 2,ta biến đổi như sau:
\(x+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\)
\(\ge2\sqrt{\frac{1x}{4x}}+\frac{3x}{4}=2.\frac{1}{2}+\frac{3x}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Vậy ....
Ngoài ra câu b) còn có thể giải như sau:
Dự đoán xảy ra cực trị tại x = 2,tức là x2 =4 ,ta biến đổi:
\(A=\frac{x^2+4-3}{x}=\frac{x^2+4}{x}-\frac{3}{x}\) (1)
Do x > 0 nên \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2.x.2}{x}=4\) (2)
Do \(x\ge2\Rightarrow\frac{1}{x}\le\frac{1}{2}\Rightarrow\frac{3}{x}\le\frac{3}{2}\Rightarrow\frac{-3}{x}\ge\frac{-3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge4-\frac{3}{2}=\frac{5}{2}\)
Vậy ...
a) Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{x^2+1}{x}\ge2\Leftrightarrow x+\frac{1}{x}\ge2\)(vì x > 0)
b) \(\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge-2x\Leftrightarrow\frac{x^2+1}{x}\le-2\Leftrightarrow x+\frac{1}{x}\le-2\)(vì x < 0)
a) Ta có: \(x+\frac{1}{x}-2=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)
Vì \(x>0,\left(x-1\right)^2\ge0\)nên \(x++\frac{1}{x}-2\ge0\)
Vậy \(x+\frac{1}{x}\ge2\)vs \(x>0\)
b) Ta có: \(x+\frac{1}{x}+2=\frac{x^2+2x+1}{x}=\frac{\left(x+1\right)^2}{x}\)
Vì \(x< 0,\left(x+1\right)^2\le0\), nên \(x+\frac{1}{x}\le0\)
Vậy \(x+\frac{1}{x}\le-2\)vs \(x< 0\)