\(1\le x\le2\) . Tìm GTNN của \(T=\dfrac{3+x}{x}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2018

\(T=\dfrac{3}{x}+1+\dfrac{3}{3-x}+1=2+3\left(\dfrac{1}{x}+\dfrac{1}{3-x}\right)\ge2+3.\dfrac{4}{x+3-x}=6\)

Vậy \(T_{min}=6\) . Dấu "=" xảy ra khi \(x=3-x\Rightarrow x=\dfrac{3}{2}\)

14 tháng 11 2018

sao mình ra GTLN là 6

GTNN thì mình không biết làm

Mình dùng delta nhé

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

Ta có:

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{3}{x}+1+\frac{3}{3-x}+1\)

\(=3\left(\frac{1}{x}+\frac{1}{1-x}\right)+2=\frac{9}{x(3-x)}+2\)

\(x\in [1,2]\Rightarrow x,3-x>0\)

Áp dụng BĐT Cauchy ngược dấu: \(x(3-x)\leq \left(\frac{x+3-x}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow T\geq \frac{9}{\frac{9}{4}}+2=6\) hay \(T_{\min}=6\)

Dấu bằng xảy ra khi \(x=3-x\Leftrightarrow x=\frac{3}{2}\)

------------

Mặt khác: \(1\leq x\leq 2\Rightarrow (x-1)(x-2)\leq 0\)

\(\Leftrightarrow 3x-x^2\geq 2\Leftrightarrow x(3-x)\geq 2\)

\(\Rightarrow T\leq \frac{9}{2}+2=\frac{13}{2}\)

Vậy \(T_{\max}=\frac{13}{2}\Leftrightarrow \text{x=1 or x=2} \)

17 tháng 5 2018

thank sir , sir giải hộ em cái bài này luôn với ạ giờ em đăng

5 tháng 4 2016

\(T=1+\frac{3}{x}+1+\frac{3}{3-x}\ge2+3\frac{4}{x+3-x}=6\)

Min T = 6 khi  x =3 -x hay  x =1,5

5 tháng 4 2016

Bn có thể ns rõ đk k z

18 tháng 5 2018

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)

Đặt T = a

<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)

<=> \(9+6x-2x^2=3xa-x^2a\)

<=> \(2x^2-6x-9=x^2a-3xa\)

<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)

Phương trình trên có nghiệm 

<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)

<=> \(36-36a+9a^2+72-36a\ge0\)

<=> \(9a^2-72a+108\ge0\)

<=> \(\left(a-6\right)\left(a-2\right)\ge0\)

<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)

Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)

và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x ) 

14 tháng 11 2017

bạn có thể xem lại điều kiện của x+y+z đc k ạ

22 tháng 4 2020

Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:

\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)

Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)

\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)

Do đó:

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)

\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)

Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)

\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)

\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)

Vậy \(A\ge2\sqrt{2}+1\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)

Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị

7 tháng 6 2020

ngu thế mà tao cũng ko bt

12 tháng 5 2020

Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:

\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)

Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)

\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)

Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)

\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)

\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)

Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)

\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))

Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)

Vậy \(A\ge2\sqrt{2}+1\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)

Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.

5 tháng 6 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ ngu mak đòi lm solo toán ko :PP

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

1)

Điều kiện: \(x\geq \frac{-1}{2}\)

Bình phương hai vế:

\(x^2+4=(2x+1)^2=4x^2+4x+1\)

\(\Leftrightarrow 3x^2+4x-3=0\)

\(\Leftrightarrow x=\frac{-2\pm \sqrt{13}}{3}\)

Do \(x\geq -\frac{1}{2}\Rightarrow x=\frac{-2+\sqrt{13}}{3}\) là nghiệm duy nhất của pt.

2)

a) \(x^2+x+12\sqrt{x+1}=36\) (ĐK: \(x\geq -1\) )

\(\Leftrightarrow (x^2+x-12)+12(\sqrt{x+1}-2)=0\)

\(\Leftrightarrow (x-3)(x+4)+\frac{12(x-3)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow (x-3)\left[x+4+\frac{12}{\sqrt{x+1}+2}\right]=0\)

Do \(x\geq -1\Rightarrow x+4+\frac{12}{\sqrt{x+1}+2}\geq 3+\frac{12}{\sqrt{x+1}+2}>0\)

Do đó \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)

Vậy pt có nghiệm x=3

b) Đặt \(\left\{\begin{matrix} \sqrt{x^2+7}=a\\ x+4=b\end{matrix}\right.\)

PT tương đương:

\(x^2+7+4(x+4)-16=(x+4)\sqrt{x^2+7}\)

\(\Leftrightarrow a^2+4b-16=ab\)

\(\Leftrightarrow (a-4)(a+4)-b(a-4)=0\)

\(\Leftrightarrow (a-4)(a+4-b)=0\)

+ Nếu \(a-4=0\Leftrightarrow \sqrt{x^2+7}=4\Leftrightarrow x^2=9\Leftrightarrow x=\pm 3\) (thỏa mãn)

+ Nếu \(a+4-b=0\Leftrightarrow a=b-4\)

\(\Leftrightarrow \sqrt{x^2+7}=x\)

\(\Rightarrow x\geq 0\). Bình phương hai vế thu được: \(x^2+7=x^2\Leftrightarrow 7=0\) (vô lý)

Vậy pt có nghiệm \(x=\pm 3\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

Câu 3:

Ta có \(M=\frac{x^2+2000x+196}{x}\)

\(\Leftrightarrow M=x+2000+\frac{196}{x}\)

Áp dụng BĐT AM-GM ta có: \(x+\frac{196}{x}\geq 2\sqrt{196}=28\)

\(\Rightarrow M=x+\frac{196}{x}+2000\geq 28+2000=2028\)

Vậy M (min) =2028. Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{196}{x}\\ x>0\end{matrix}\right.\Rightarrow x=14\)

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0