Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta chứng minh điều ngược lại đúng mà đây là BĐT Nesbitt tìm trên mạng đầy cách c/m

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

\(a^2+b^2=13\Leftrightarrow a^2+b^2+2ab-2ab=13\Leftrightarrow\left(a+b\right)^2-2ab=13\)
Mà \(a+b-ab=-1\Leftrightarrow ab=a+b+1\)Thay vào phương trình trêm ta có:
\(\left(a+b\right)^2-2\left(a+b+1\right)=13\)
<=> \(\left(a+b\right)^2-2\left(a+b\right)+1=16\)
<=> \(\left(a+b+1\right)^2=4^2\)
<=> \(a+b+1=\pm4\)=> \(ab=\pm4\)
Ta lại có: \(a^2+b^2=13\Leftrightarrow\left(a-b\right)^2+2ab=13\)
+) Với ab=4
thay vào ta có: \(\left(a-b\right)^2+8=13\Leftrightarrow\left(a-b\right)^2=5\Leftrightarrow\left|a-b\right|=\sqrt{5}\)
=> \(P=\left|a^3-b^3\right|=\left|\left(a-b\right)\left(a^2+b^2+ab\right)\right|=\left|a-b\right|\left|a^2+b^2+ab\right|\)
\(=\sqrt{5}\left(13+4\right)=17\sqrt{5}\)
+) Với ab=-4 . Em làm tương tự nhé!

a3+b3+ab=(a+b)3-3ab(a+b)+ab=(a+b)3-ab(3a+3b-1)
=(a+b)3-ab(2a+4b)
=(a+b)3-2ab(a+2b) (đề bài sai phải không????)

Ta có a + b = 1 nên \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)
\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)