Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(2n+2017=a^2;n+2019=b^2\)
\(\Rightarrow2n+4038=2b^2\)
\(\Rightarrow2b^2-a^2=2021\)
\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)
Tự xét nốt nha
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)
\(\Leftrightarrow2019a+2019b-ab=0\)
\(\Leftrightarrow ab-2019a-2019b=0\)
\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)
\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)
\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )
P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)
\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)

Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)
\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.
Ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)
Khi đó:
\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)
Tương tự:
\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)
\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=b=c=1\)
P/S:Is that true ??

Bài này chắc dùng phương pháp hạ bậc + chọn điểm rơi. :v
Lời giải:
Dự đoán dấu "=" xảy ra tại a = b = 1
Ta có: \(1+a^2\ge2a;1+b^2\ge2b\) (cô si)
Suy ra \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{1}{2a}+\frac{1}{2b}\) (1)
Áp dụng BĐT Am-Gm (Cô si),ta có: \(ab\le\frac{a^2+b^2}{2}\)
Lại có: \(\frac{2}{1+ab}\ge\frac{2}{1+\frac{a^2+b^2}{2}}\ge\frac{2}{1+\frac{2}{2}}=1\) (2)
Ta sẽ c/m: \(\frac{1}{2a}+\frac{1}{2b}\le1\Leftrightarrow\frac{1}{a}+\frac{1}{b}\le2\)
Chứng minh tiếp đi:v,bí r:v