Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
♡
\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)
♡
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-3\)
♡
\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)
= 28
♡
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)
= - 1
♡
\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)
\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)
♡
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)
\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a: \(=\sqrt{\dfrac{1}{10}}+\sqrt{\dfrac{1}{60}}-\dfrac{2\sqrt{15}}{15}\)
\(=\dfrac{\sqrt{10}}{10}-\dfrac{2\sqrt{15}}{15}+\dfrac{\sqrt{15}}{30}\)
\(=\dfrac{3\sqrt{10}-3\sqrt{15}}{30}=\dfrac{\sqrt{10}-\sqrt{15}}{10}\)
b: \(=\dfrac{\left(\sqrt{5}+\dfrac{1}{2}\cdot2\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)}{2\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{5}-\dfrac{1}{2}\sqrt{5}+\sqrt{5}\right)}{2\sqrt{5}}\)
\(=\dfrac{5}{2}:2=\dfrac{5}{4}\)
So Sánh
a.\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
Có:\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
= \(\dfrac{1}{4}.2\sqrt{2}\) và \(\dfrac{2}{3}.2\sqrt{3}\)
=\(\dfrac{\sqrt{2}}{2}\)và \(\dfrac{4\sqrt{3}}{3}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
b. \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)và \(6\sqrt{\dfrac{1}{35}}\)
Có \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và \(6\sqrt{\dfrac{1}{35}}\)
=\(\dfrac{5}{2}.\dfrac{\sqrt{6}}{6}\) và \(6.\dfrac{\sqrt{35}}{35}\)
=\(\dfrac{5\sqrt{6}}{12}\) và \(\dfrac{6\sqrt{35}}{35}\)
=> \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{35}}\)
c. \(\dfrac{1}{6}\sqrt{18}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{1}{6}.3\sqrt{2}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{\sqrt{2}}{2}\) và \(\dfrac{\sqrt{2}}{2}\)
=> \(\dfrac{1}{6}\sqrt{18}=\dfrac{1}{2}\sqrt{2}\)
a,\(\dfrac{1}{4}\sqrt{8}=\dfrac{1}{\sqrt{2}}\)
\(\dfrac{2}{3}\sqrt{12}=\dfrac{4}{\sqrt{3}}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)
b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)
c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)
d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)
e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)
f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)
g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)
h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)