K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Ôn tập toán 6

31 tháng 3 2017

cái cc j đây ???limdim

15 tháng 3 2017

Ta có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

           \(\frac{b}{b+c+d}>\frac{b}{a+d+c+d}\)

            \(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

             \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+b+a}+\frac{d}{d+a+b}< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 1\)    (1)

Lại có: \(\frac{a}{a+b+c}< \frac{a+c}{a+b+c+d}\)

           \(\frac{b}{b+c+d}< \frac{b+d}{a+b+c+d}\)

            \(\frac{c}{c+d+a}< \frac{c+a}{a+b+c+d}\)

            \(\frac{d}{d+a+b}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)        (2)

Từ (1)(2) => \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)   (đpcm)

            

11 tháng 2 2019

Theo quy tắc so sánh các phân số có cùng tử dương, ta có :

              \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\)       (1)

               \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\) (2)

             \(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+d}\) (3)

              \(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\) (4)

Cộng (1) ; (2) ; (3) ; (4) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}=2\)

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you