Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cần chứng minh điều này :
\(CMR:1^1+2^2+3^3+4^4+...+n^n< \left(n+1\right)^{n+1}\) (1)
+) với \(n=1\) thì (1) đúng
+) giả sử (1) đúng với \(n=k\) tức là : \(1^1+2^2+...+k^k< \left(k+1\right)^{k+1}\)
ta cũng có thể chứng minh được (1) đúng với \(n=k+1\)
tức : \(1^1+2^2+...+k^k+\left(k+1\right)^{k+1}< \left(k+2\right)^{k+2}\)
thật vậy : ta có \(VT< 2\left(k+1\right)^{k+1}< \left(k+2\right)\left(k+2\right)^{k+1}=\left(k+2\right)^{k+2}\)
\(\Rightarrow\) (đpcm)
áp dụng cho bài toán ta có :
\(1^1+2^2+...+99^{99}< 100^{100}\)
\(\Leftrightarrow1^1+2^2+...+99^{99}+100^{100}< 2.100^{100}\)
mà ta để dàng thấy \(2.100^{100}\) có 201 chữ số \(\Rightarrow\) (đpcm)
mk chưa đọc hết đề nên giải còn thiếu ! nên h mk sẽ giải cho hết luôn nhé
áp dụng bđt vừa chứng minh ta có :
vì \(M< 2.100^{100}\Rightarrow\) số hạng đầu là số 1
theo phương pháp cũ ta có thể chứng minh :
\(1^1+2^2+...+n^n< \left(n+1\right)^n\)
từ đó ta có thể thấy được :
\(1^1+2^2+...+99^{99}< 100^{99}\) \(\Rightarrow M< 100^{100}+100^{99}\)
\(\Rightarrow\) số hạng thứ 2 là số 0
\(\Rightarrow\) tổng 2 chữ số đầu tiên của số M là : \(1+0=1\)
vậy ....
Ta có: \(A=7+7^2+7^3+7^4+....+7^{99}\)
\(\Rightarrow7A=7^2+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7^2+7^3+7^4+7^5+...+7^{100}\right)-\left(7+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-7\Rightarrow A=\dfrac{7^{100}-7}{6}\) (1)
a) Từ (1) suy ra \(A< \dfrac{7^{100}}{6}\)
\(a.\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
1<M<2\(\Rightarrow M\notin N\)
\(\Rightarrowđpcm\)
b.\(A=1^2+2^2+...+100^2\)
\(=1+\left(1+1\right)2+\left(1+2\right)3+...+\left(1+99\right)100\)
\(=\left(1+2+3+...+100\right)+\left(1.2+2.3+...+99.100\right)\)
đặt \(N=1.2+2.3+...+99.100\)
\(\Rightarrow3N=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+...+99.100.101\)
\(=99.100.101\Rightarrow N=\frac{99.100.101}{3}=333300\)
\(\Rightarrow A=5050+333300=338350\)
Bài 1:
\(M\left(1\right)=a+b+6\)
Mà \(M\left(1\right)=0\)
\(\Rightarrow a+b+6=0\)
\(\Rightarrow a+b=-6\)( * )
\(\Rightarrow2a+2b=-12\) (1)
Ta có: \(M\left(-2\right)=4a-2b+6\)
Mà \(M\left(-2\right)=0\)
\(\Rightarrow4a-2b=-6\)(2)
Lấy (1) cộng (2) ta được:
\(6a=-18\)
\(a=-3\)
Thay a=-3 vào (* ) ta được:
\(b=-3\)
Vậy a=-3 ; b=-3
Bài 2:
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right).x=5.8\)
\(\Leftrightarrow\left(1-2y\right).x=40\)
Vì \(x,y\in Z\Rightarrow1-2y\in Z\)
mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)
Thử từng TH
b,ấp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\) = 1
từ \(\frac{a1-1}{100}\) = 1 suy ra :a1-1=100 =) a1=101
........................................................................
từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101
vậy a1=a2=a3=...=a100=101
Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:
a) Tam giác FEC đồng dạng với tam giác FBD
b) Tam giác AED đồng dạng với tam giác HAC
c) Tính BC, AH, AC
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)