\(1^1+2^2+3^3+...+99^{99}+100^{100}\)

Chứng minh rằn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

ta cần chứng minh điều này :

\(CMR:1^1+2^2+3^3+4^4+...+n^n< \left(n+1\right)^{n+1}\) (1)

+) với \(n=1\) thì (1) đúng

+) giả sử (1) đúng với \(n=k\) tức là : \(1^1+2^2+...+k^k< \left(k+1\right)^{k+1}\)

ta cũng có thể chứng minh được (1) đúng với \(n=k+1\)

tức : \(1^1+2^2+...+k^k+\left(k+1\right)^{k+1}< \left(k+2\right)^{k+2}\)

thật vậy : ta có \(VT< 2\left(k+1\right)^{k+1}< \left(k+2\right)\left(k+2\right)^{k+1}=\left(k+2\right)^{k+2}\)

\(\Rightarrow\) (đpcm)

áp dụng cho bài toán ta có :

\(1^1+2^2+...+99^{99}< 100^{100}\)

\(\Leftrightarrow1^1+2^2+...+99^{99}+100^{100}< 2.100^{100}\)

mà ta để dàng thấy \(2.100^{100}\) có 201 chữ số \(\Rightarrow\) (đpcm)

15 tháng 1 2019

mk chưa đọc hết đề nên giải còn thiếu ! nên h mk sẽ giải cho hết luôn nhé

áp dụng bđt vừa chứng minh ta có :

\(M< 2.100^{100}\Rightarrow\) số hạng đầu là số 1

theo phương pháp cũ ta có thể chứng minh :

\(1^1+2^2+...+n^n< \left(n+1\right)^n\)

từ đó ta có thể thấy được :

\(1^1+2^2+...+99^{99}< 100^{99}\) \(\Rightarrow M< 100^{100}+100^{99}\)

\(\Rightarrow\) số hạng thứ 2 là số 0

\(\Rightarrow\) tổng 2 chữ số đầu tiên của số M là : \(1+0=1\)

vậy ....

8 tháng 10 2017

Ta có: \(A=7+7^2+7^3+7^4+....+7^{99}\)

\(\Rightarrow7A=7^2+7^3+7^4+7^5+...+7^{100}\)

\(\Rightarrow7A-A=\left(7^2+7^3+7^4+7^5+...+7^{100}\right)-\left(7+7^2+7^3+7^4+...+7^{99}\right)\)

\(\Rightarrow6A=7^{100}-7\Rightarrow A=\dfrac{7^{100}-7}{6}\) (1)

a) Từ (1) suy ra \(A< \dfrac{7^{100}}{6}\)

11 tháng 10 2017

Thanks

\(a.\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

1<M<2\(\Rightarrow M\notin N\)

\(\Rightarrowđpcm\)

b.\(A=1^2+2^2+...+100^2\)

\(=1+\left(1+1\right)2+\left(1+2\right)3+...+\left(1+99\right)100\)

\(=\left(1+2+3+...+100\right)+\left(1.2+2.3+...+99.100\right)\)

đặt \(N=1.2+2.3+...+99.100\)

\(\Rightarrow3N=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+...+99.100.101\)

\(=99.100.101\Rightarrow N=\frac{99.100.101}{3}=333300\)

\(\Rightarrow A=5050+333300=338350\)

 

31 tháng 5 2019

Bài 1:

\(M\left(1\right)=a+b+6\)

Mà \(M\left(1\right)=0\)

\(\Rightarrow a+b+6=0\)

\(\Rightarrow a+b=-6\)( * )

\(\Rightarrow2a+2b=-12\) (1)

Ta có: \(M\left(-2\right)=4a-2b+6\)

Mà \(M\left(-2\right)=0\)

\(\Rightarrow4a-2b=-6\)(2)

Lấy (1) cộng (2) ta được:

\(6a=-18\)

\(a=-3\)

Thay a=-3 vào (* ) ta được:

\(b=-3\)

Vậy a=-3 ; b=-3

31 tháng 5 2019

Bài 2:

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right).x=5.8\)

\(\Leftrightarrow\left(1-2y\right).x=40\)

Vì \(x,y\in Z\Rightarrow1-2y\in Z\)

mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)

Thử từng TH

28 tháng 11 2016

b,ấp dụng tính chất dãy tỉ số = nhau ta có:

\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\)  = 1

từ \(\frac{a1-1}{100}\) = 1  suy ra :a1-1=100 =) a1=101

........................................................................

từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101

vậy a1=a2=a3=...=a100=101

4 tháng 11 2018

Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:

a) Tam giác FEC đồng dạng với tam giác FBD

b) Tam giác AED đồng dạng với tam giác HAC

c) Tính BC, AH, AC

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

8 tháng 10 2017

a) \(A=7+7^2+...+7^{99}\)

\(7A=7^2+7^3+...+7^{100}\)

\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)

\(6A=7^{100}-7\)

\(A=\frac{7^{100}-7}{6}\)

Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)

b) \(A=7+7^2+...+7^{99}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)

\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)

\(A=399+...+7^{96}.399\)

\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)

8 tháng 10 2017

Còn bn nào giải đc phần c không