Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kkk, thế này mà cũng hỏi:
abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả
=> abc,bac,cab đều chia hết cho 37
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Ta có \(abc⋮37\)
\(\Rightarrow100a+10b+c⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
\(\Rightarrow1000a-999a+100b+10c⋮37\)( Vì \(999a⋮37\))
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow bca⋮37\)
Ta có : \(bca⋮37\)
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow1000b-999b+100c+10a⋮37\)( Vì \(999b⋮37\))
\(\Rightarrow100c+10a+b⋮37\)
hay \(cab⋮37\left(đpcm\right)\)