K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(abc⋮37\)

\(\Rightarrow100a+10b+c⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

\(\Rightarrow1000a-999a+100b+10c⋮37\)( Vì \(999a⋮37\))

\(\Rightarrow100b+10c+a⋮37\)

\(\Rightarrow bca⋮37\)

Ta có : \(bca⋮37\)

\(\Rightarrow100b+10c+a⋮37\)

\(\Rightarrow1000b-999b+100c+10a⋮37\)( Vì \(999b⋮37\))

\(\Rightarrow100c+10a+b⋮37\)

hay \(cab⋮37\left(đpcm\right)\)

8 tháng 5 2021

kkk, thế này mà cũng hỏi:

abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả

=> abc,bac,cab đều chia hết cho 37

8 tháng 5 2021

abc là 1 số mà bạn ơi

21 tháng 1 2016

a, mk quên cách làm

b,ab+ba=11a+11b=11(a+b) chia hết cho 11

21 tháng 1 2016

Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j

6 tháng 8 2018

abc + bca + cab 

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)

= 111a + 111b + 111c

= 111(a + b + c) 

= 37.3(a + b + c) \(⋮\) 37 (đpcm)

7 tháng 8 2018

ta có:abc+bca+cab=111.a

Vi 111 chia het cho 7 nen abc+bac+cab

k đ nha

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)