K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

b = 3.32008.72010.132010.13

= (3.13).(34)502. (7. 13)2010

= 39.81502. 912010

Ta có 81502 và 912010 đều có chữ số tận cùng bằng 1.

Vậy b có chữ số hàng đơn vị là 9.

22 tháng 6 2019

b = (3.32008).(72010.132010).13

   = (3.13).(34)502 .(7.13)2010

   = 39.81502 . 912010

Ta có 81502 và 912010 đều có chữ số tận cùng bằng 1.

Vậy b có chữ số hàng đơn vị là 9.

22 tháng 6 2019

#)Giải :

Ta có : 2009 : 4 = 502 dư 1 => Chọn 31

            2010 : 4 = 502 dư 2 => Chọn 72

            2011 : 4 = 502 dư 3 => Chọn 133

=> 31.72.13= 3.49.2197 = 322959 có chữ số hàng đơn vị là 9

=> B = 32009.72010.132011 có chữ số tận cùng là 9

13 tháng 3 2019

3b-b=2b=32010-3

b=32010-3  /2

ta có

\(3^4\equiv1\left(mod10\right)\)

=>\(\left(3^4\right)^{25}\equiv1\left(mod10\right)\)

=>\(3^{100}-3\equiv-2\left(mod10\right)\)

=>(3^100-3)/2 =-1(mod10)

=>tận cùng của b là 9

14 tháng 3 2019

a)\(3B=3^2+3^3+3^4+..+3^{2010}\)

\(3B-B=2B=3^{2010}-3\Rightarrow B=\frac{3^{2010}-3}{2}\)

b)Xét chữ số tận cùng của \(3^{2010}=3^{2008}.3^2=3^{4k}.3^2=\left(...1\right).9=\left(...9\right)\)

Suy ra \(2B=3^{2010}-3=\left(...9\right)-3=\left(...6\right)\)

Suy ra \(B=\frac{\left(...6\right)}{2}=\left(...3\right)\)

Vậy ...

28 tháng 12 2017

ta có A=\(2^{32}.5^{25}=2^7.\left(2.5\right)^{25}=128.10^{25}=1280...0\) (25 số 0)

=> A có 28 số 

22 tháng 7 2016

\(B=\left(3^4\right)^{502}.3.\left(7^4\right)^{502}.7^2.\left(13^4\right)^{502}.13^3\)

\(B=\overline{\left(...........1\right)}\overline{\left(..........1\right)\left(...........1\right)}.3.49.2197=\left(\overline{...............9}\right)\)

Vậy B có tận cùng là 9

22 tháng 7 2016

- Giải khác SBT nhé! :D

23 tháng 7 2016

Ta có : \(3^4=\overline{...1}\)

<=>  \(\left(3^4\right)^{502}=\overline{...1}\)

<=> \(\left(3^4\right)^{502}\cdot3=\overline{...3}\)

<=> \(3^{2009}=\overline{...3}\)(1)

Và \(7^8=\overline{...1}\)

<=> \(\left(7^8\right)^{251}=\overline{...1}\)

<=> \(7^{2008}\cdot7^2=\overline{...9}\)

<=> \(7^{2010}=\overline{...9}\)(2)

Và \(13^4=\overline{...1}\)

<=> \(\left(13^4\right)^{502}=\overline{...1}\)

<=> \(\left(13^4\right)^{502}\cdot13^3=\overline{...7}\)(3)

Từ (1)(2)(3)=> b= \(3^{2009}\cdot7^{2010}\cdot13^{2011}=\overline{...3}\cdot\overline{...7}\cdot\overline{...9}=\overline{...9}\)

Vậy chữ số hàng đơn vị của b là 9.

25 tháng 9 2016
a=213.57=640000000Vậy có 9 chữ số

b=32009.72010.132011

Ta có: 33
2009 có chư số tận cùng là 3

72010 có chữ số tân cùng là 9

132011 có chữ số tận cùng là 7

\Rightarrow b có chữ số tận cung là:3.7.9=189.Vậy có chữ số tận cùng là 9.
20 tháng 8

Bài 1: Cho 1 ví dụ để bác bỏ các ý kiến sau:

a) Tổng của 2 số vô tỉ là 1 số vô tỉ

Ý kiến: Tổng của hai số vô tỉ luôn là số vô tỉ.

Bác bỏ: Tổng của hai số vô tỉ có thể là một số hữu tỉ.

Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = - \sqrt{2}\).

Tổng của chúng là:

\(x + y = \sqrt{2} + \left(\right. - \sqrt{2} \left.\right) = 0\)

Vì 0 là một số hữu tỉ, nên tổng của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng tổng của hai số vô tỉ luôn là vô tỉ.

b) Hiệu của 2 số vô tỉ là 1 số vô tỉ

Ý kiến: Hiệu của hai số vô tỉ luôn là số vô tỉ.

Bác bỏ: Hiệu của hai số vô tỉ có thể là một số hữu tỉ.

Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \sqrt{2}\).

Hiệu của chúng là:

\(x - y = \sqrt{2} - \sqrt{2} = 0\)

Vì 0 là một số hữu tỉ, nên hiệu của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng hiệu của hai số vô tỉ luôn là vô tỉ.

c) Tích của 2 số vô tỉ là 1 số vô tỉ

Ý kiến: Tích của hai số vô tỉ luôn là vô tỉ.

Bác bỏ: Tích của hai số vô tỉ có thể là một số hữu tỉ.

Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \frac{1}{\sqrt{2}}\).

Tích của chúng là:

\(x \cdot y = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1\)

Vì 1 là một số hữu tỉ, nên tích của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng tích của hai số vô tỉ luôn là vô tỉ.

d) Thương của 2 số vô tỉ là 1 số vô tỉ

Ý kiến: Thương của hai số vô tỉ luôn là vô tỉ.

Bác bỏ: Thương của hai số vô tỉ có thể là một số hữu tỉ.

Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \sqrt{2}\).

Thương của chúng là:

\(\frac{x}{y} = \frac{\sqrt{2}}{\sqrt{2}} = 1\)

Vì 1 là một số hữu tỉ, nên thương của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng thương của hai số vô tỉ luôn là vô tỉ.


Bài 2: Tìm \(x\)\(y\)\(z\)

a) Giải phương trình:

\(\mid x + \frac{19}{5} \mid + \mid y + \frac{1890}{1975} \mid + \mid z - 2023 \mid = 0\)

Để tổng của ba giá trị tuyệt đối bằng 0, mỗi giá trị trong các dấu giá trị tuyệt đối phải bằng 0. Do đó, ta có:

\(x + \frac{19}{5} = 0 , y + \frac{1890}{1975} = 0 , z - 2023 = 0\)

Giải các phương trình trên:

  1. \(x = - \frac{19}{5}\)
  2. \(y = - \frac{1890}{1975}\)
  3. \(z = 2023\)

Vậy:

\(x = - \frac{19}{5} , y = - \frac{1890}{1975} , z = 2023\)

b) Giải phương trình:

\(\mid x - \frac{9}{2} \mid + \mid y + \frac{4}{3} \mid + \mid z + \frac{7}{2} \mid \leq 0\)

Tổng của ba giá trị tuyệt đối không thể nhỏ hơn 0, và tổng này chỉ bằng 0 khi mỗi giá trị tuyệt đối đều bằng 0. Vì vậy, ta có:

\(x - \frac{9}{2} = 0 , y + \frac{4}{3} = 0 , z + \frac{7}{2} = 0\)

Giải các phương trình trên:

  1. \(x = \frac{9}{2}\)
  2. \(y = - \frac{4}{3}\)
  3. \(z = - \frac{7}{2}\)

Vậy:

\(x = \frac{9}{2} , y = - \frac{4}{3} , z = - \frac{7}{2}\)


Bài 3: Tìm giá trị nhỏ nhất của các biểu thức

a) Tìm giá trị nhỏ nhất của biểu thức:

\(A = \mid 2 x - \frac{1}{3} \mid + 107\)

Biểu thức \(A\) có giá trị nhỏ nhất khi \(\mid 2 x - \frac{1}{3} \mid = 0\), tức là \(2 x = \frac{1}{3}\), hoặc \(x = \frac{1}{6}\).

Khi \(x = \frac{1}{6}\), ta có:

\(A = 0 + 107 = 107\)

Vậy giá trị nhỏ nhất của \(A\) là 107.

b) Tìm giá trị nhỏ nhất của biểu thức:

\(B = \mid x + \frac{1}{2} \mid + \mid x + \frac{1}{3} \mid + \mid x + \frac{1}{4} \mid\)

Để giá trị của \(B\) nhỏ nhất, ta cần chọn giá trị của \(x\) sao cho các giá trị tuyệt đối trong biểu thức nhỏ nhất. Các điểm mà các giá trị tuyệt đối bằng 0 là:

\(x = - \frac{1}{2} , x = - \frac{1}{3} , x = - \frac{1}{4}\)

Do đó, ta chọn giá trị \(x = - \frac{1}{3}\) vì nó nằm giữa các giá trị trên, giúp các giá trị tuyệt đối đạt giá trị nhỏ nhất. Khi \(x = - \frac{1}{3}\), ta có:

\(B = \mid - \frac{1}{3} + \frac{1}{2} \mid + \mid - \frac{1}{3} + \frac{1}{3} \mid + \mid - \frac{1}{3} + \frac{1}{4} \mid\)

Tính các giá trị:

\(B = \mid - \frac{1}{3} + \frac{1}{2} \mid + 0 + \mid - \frac{1}{3} + \frac{1}{4} \mid\)\(B = \mid - \frac{2}{6} + \frac{3}{6} \mid + 0 + \mid - \frac{4}{12} + \frac{3}{12} \mid\)\(B = \frac{1}{6} + 0 + \frac{1}{12} = \frac{2}{12} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4}\)

Vậy giá trị nhỏ nhất của \(B\) là \(\frac{1}{4}\).

20 tháng 8

Tham khảo