Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét hai trường hợp :
1. n = 1 => A = 5 là số nguyên tố.
2. Với n là số nguyên dương lớn hơn 1 và n chẵn , dễ thấy A chia hết cho 2 và A > 2 => A là hợp số
3. Với n là số nguyên dương lớn hơn 1 và n lẻ , ta biểu diễn : \(A=\left(n^4-1\right)+\left(4^n+1\right)=\left(n^4-1\right)+\left(4+1\right).B\)với B là một biểu thức trong phân tích \(4^n+1\)thành nhân tử.
Xét các số nguyên n không chia hết cho 5 sẽ có dạng : \(n=5k\pm1,n=5k\pm2\)(\(k\in N\))
n2 có một trong hai dạng : \(n^2=5k+1\), \(n^2=5k+4\)
n4 có một dạng duy nhất : \(n^4=5k+1\)
Do đó : \(n^4-1\) chia hết cho 5. Lại có \(\left(4+1\right)B=5B\) cũng chia hết cho 5.
Vậy ta có \(A⋮5,A>5\) => A là hợp số.
Vậy A là số nguyên tố nếu n = 1 , A là hợp số nếu n > 1
+ Nếu p=2
.Xét n>1 thì (n2)2<A=n4+4n<n4+2n2+1=(n2+1)2(loại)
Xét -2<n<0
suy ra (n2−1)2=n4−2n2+1<n4−4|n|=A<(n2)2(loại)
Do đó nϵ{−2,−1,0,1}
.Thử chọn ta đc n=0
.+ Nếu p=3 suy ra (n2)2<A=n4+4n2<(n2+2)2 nên A=(n2+1)2
.⇒n4+4n2=n4+2n2+1⇒2np−1=1
ko có n thỏa mãn vì VT chẵn còn VP lẻ.
+ Nếu p≥5 ⇒A=n4(1+4np−5) do đó 1+4np−5
cũng phải là số chính phương.
Mà do p≥5
nên p lẻ nên 4np−5 là số chính phương. Mà 1+4np−5 cũng là số chính phương. Suy ra n=0 vì chỉ có 2 số chính phương liên tiếp nhau là 0 và 1
.Vậy n=0
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Akai Haruma Nguyễn Huy Tú Lightning Farron soyeon_Tiểubàng giải Võ Đông Anh Tuấn Mysterious Person giúp mình với
\(ab=cd\)
\(\Leftrightarrow\dfrac{a}{d}=\dfrac{c}{b}\)
Đặt \(\dfrac{a}{d}=\dfrac{c}{b}=h\left(h\in N\cdot\right)\Rightarrow\left\{{}\begin{matrix}a=hd\\c=hb\end{matrix}\right.\)
\(\Rightarrow A=a^n+b^n+c^n+d^n\)
\(=\left(hd\right)^n+b^n+\left(hb\right)^n+d^n\)
\(=h^n\left(b^n+d^n\right)+\left(b^n+d^n\right)\)
\(=\left(h^n+1\right)\left(b^n+d^n\right)\) là hợp số (đpcm)
Chứng minh rằng n^4+4^n là hợp số với mọi n là số tự nhiên, n>1 - Đại số - Diễn đàn Toán học
CHính xác ko có Z+ Đâu :)