Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Giải:
\(1+5+5^2+...+5^{404}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{402}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{402}.31\)
\(=31\left(1+5^3+...+5^{402}\right)\)
Mà \(31⋮31\)
Nên \(31\left(1+5^3+...+5^{402}\right)⋮31\)
Vậy \(1+5+5^2+...+5^{404}⋮31\)
Chúc bạn học tốt!
gom (1+5+52)+(53+54+55)+.......+(5402+5403+5404)
=1 (1+5+52)+53 (1+5+52)+.....+5402 (1+5+52)
=1.31 + 53.31 + .....+5402.31
vì các tích đều chia hết cho 31 => 1+5+52+53+54+55+.......+5402+5403+5404\(⋮31\)
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Sô tự nhiên chia hêt cho 2: 740,470,704,
Sô chia hêt cho5:740,470,
Sô chia hêt cho 2,5:740,470
Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)
Khi chia \(a\) cho \(3\) ta có các trường hợp :
\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)
\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)
\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)
Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)
\(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )
Xét 3 trường hợp :
+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3
+ a = 3k + 1
=> a+2 = 3k + 1 + 2
= 3k + ( 1 + 2 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+2) \(⋮\) 3
+ a = 3k + 2
=> a+1 = 3k + 2 + 1
= 3k + ( 2 + 1 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+1) \(⋮\) 3
Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
a) ta có ab là 1 số chia hết cho 11
cd là 1 số chia hết cho 11
eg là 1 số chia hết cho 11
(Vì 1 tổng chia hết cho số nào đó thì các số hạng trong tổng phải chia hết cho số đó)
suy ra abcdeg chắc chắn chia hết cho 11
a, Ta có: \(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\overline{ab}.9999+\overline{cd}.99+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì : \(\left\{{}\begin{matrix}9999⋮11;99⋮11\Rightarrow\overline{ab}.9999⋮11;\overline{cd}.99⋮11\Rightarrow\overline{ab}.9999+\overline{cd}.99⋮11\\\overline{ab}+\overline{cd}+\overline{eg}⋮11\end{matrix}\right.\)
Nên \(\overline{abcdeg}⋮11\)
\(M=1+3+3^2+...........+3^{118}+3^{119}\)
\(\Leftrightarrow M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+..........+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(\Leftrightarrow M=40+3^4\left(1+3+3^2+3^3\right)+..........+3^{116}\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow M=40+3^4.40+...........+3^{116}.40\)
\(\Leftrightarrow M=40\left(1+3^4+.........+3^{116}\right)⋮5\)
\(\Leftrightarrow M⋮5\)
a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3
a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
xét 2n-1=1 n=1
2n-1=-1 n=0
2n-1=3 n=2
2n-1=-3 n=-1
vậy n=\(\left\{-1;0;1;2\right\}\)
b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)
c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2
xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số
xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số
vậy n^2+2018 là hợp số
Gọi số cần tìm là \(n\) \(\left(n\in N\right)\)
Vì \(n⋮5\) và \(n⋮27\)
\(\Rightarrow n\) có chữ số tận cùng là \(0\) hoặc \(5\)
+) Xét \(n=\)*\(975\) chia hết cho \(9\) \(\Rightarrow\) *\(=6\). Thử lại \(6975\) \(⋮̸\) \(27\) \(\rightarrow loại\)
+) Xét \(n=\)*\(970\) chia hết cho \(9\) \(\Rightarrow\) *\(=2\) Thử lại \(2970⋮27\) (TM)
Vậy \(n=2970\) là giá trị cần tìm
~~Chúc bn học tốt!!~~
theo mk nghĩ là 27 = 3.9. C/m chia hết cho 27 thì c/m chia hết cho 3 và 9 nhưng mà ƯCLN(3,9)=3 kia mà. Bạn giải thích đoạn đó giúp mk đc ko?
Câu hỏi của kieu cao duong - Toán lớp 6 - Học toán với OnlineMath
Xét số \(\overline{abcd}\)không chia hết cho 5
Giả sử d chia 5 dư q
\(\overline{abcd}\)= 1000.a + 100.b + 10.c + d
Vì 1000.a ; 100.b và 10.c đều chia 5 dư 0 và d chia 5 dư q nên \(\overline{abcd}\)chia 5 dư 0 + 0 + 0 + q = q
Vậy số dư của \(\overline{abcd}\) chia 5 bằng số dư của d chia 5.
Tham khảo đê!!!!!!!