K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

25 tháng 12 2017

Mình làm theo cách của mình học ở trường là như sau:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3x}\)

= \(\dfrac{a.\left(2bz-3cy\right)}{a.a}=\dfrac{2b\left(3cx-az\right)}{2b.2b}=\dfrac{3c\left(ay-2bx\right)}{3x.3x}\)

=\(\dfrac{2abz-3acy}{a^2}=\dfrac{6cbx-2abz}{2b^2}=\dfrac{3cay-6cbx}{9c^2}\)

=\(\dfrac{2abz-3acy}{a^2}+\dfrac{6cbx-2abz}{2b^2}+\dfrac{3cay-6cbx}{9c^2}\)

=\(\dfrac{0}{a^2+4b^2+9c^2}=0\)

=> \(\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{z}{3c}=\dfrac{y}{2b}\\\dfrac{x}{a}=\dfrac{y}{2b}\end{matrix}\right.\)

=> \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)( ĐPCM)

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

8 tháng 3 2018

Bài 2:

a. Gọi 3 số tự nhiên liên tiếp lần lượt là a; a+1; a+2

Ta có: \(a+a+1+a+2=3a+3\)

\(3a⋮3\)\(3⋮3\)

Suy ra: \(3a+3⋮3\)

Do đó tổng 3 số tự nhiên liên tiếp chia hết cho 3

b.

Gọi 5 số tự nhiên liên tiếp lần lượt là a; a+1; a+2; a+3; a+4

Ta có: tổng 5 số tự nhiên liên tiếp là

a + a+1+a+2 +a+3+a+4

= 5a + 10

Ta có: 5a+10 chia hết cho 5

Suy ra: Tổng 5 số tự nhiên liên tiếp chia hết cho 5

6 tháng 2 2017

p vào link này: https://olm.vn/hoi-dap/question/533081.html

( câu d bài 2 )

6 tháng 2 2017

3a + 5b = 8c
3a ­ 3b = 8c – 8b 3(a – b) = 8(c – b)
Do đó 3(a – b) 8, từ đó a – b 8
Do a b nên a – b
­ Trường hợp: a – b = 8 cho c – d = 3, ta có:
a = 8; b = 0; c = 3
a = 9; b = 1; c = 4.
­ Trường hợp: a – b = ­ 8 cho c – b = 3, ta có:
a = 1; b = 9; c = 6.
Vậy tất cả có ba số thỏa mãn bài toán: 803, 914, 196