Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)
\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)
\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)
\(\Rightarrow4a+2b+1⋮7\)
\(21a-14b+7⋮7\)
\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)
\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)
\(\Rightarrow25a-12b+8⋮7\)
Đề sai
Ta có : \(\hept{\begin{cases}a+3b=8\\2a+3c=7\end{cases}}\Rightarrow\left(a+3b\right)+\left(2a+3c\right)=8+7\)
\(\Leftrightarrow a+3b+2a+3c=15\)
\(\Leftrightarrow\left(2a+a\right)+3b+3c=15\)
\(\Leftrightarrow3a+3b+3c=15\)
\(\Leftrightarrow3\left(a+b+c\right)=15\)
\(\Leftrightarrow a+b+c=15\div3\)
\(\Leftrightarrow a+b+c=5\)
Sửa đề: cho a, b là các số nguyên thỏa mãn \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) .....
Giải: Ta có: \(\left(7a-21b\right)⋮7\) nên \(\left(7a-21b+5\right)\) không chia hết cho 7
Mà theo đề \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) suy ra \(\left(a-3b+1\right)⋮7\)
Lại có: \(\left(42a+14b+14\right)⋮7\) vì các số hạng đều chia hết cho 7
Do đó \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\) hay \(\left(43a+11b+15\right)⋮7\)
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
2. Ta có: x - 3 = y(x - 2)
=> x - 3 - y(x - 2) = 0
=> (x - 2) - y(x - 2) = 1
=> (1 - y)(x - 2) = 1
=> 1 - y; x - 2 \(\in\)Ư(1) = {1; -1}
Lập bảng :
1 - y | 1 | -1 |
x - 2 | 1 | -1 |
y | 0 | 2 |
x | 3 | 1 |
Vậy ...
\(\left(14a-35b+5\right)\left(2a-3b+5\right)⋮7\)
Mà 7 là số nguyên tố nên một trong 2 số \(\left(14a-35b+5\right)\)và \(\left(2a-3b+5\right)\)phải chia hết cho 7
Dễ thấy \(\left(14a-35b+5\right)=14a-35b+7-2\)chia 7 dư 5
\(\Rightarrow\left(2a-3b+5\right)⋮7\)
\(\Rightarrow5\left(2a-3b+5\right)⋮7\)
\(\Rightarrow\left(10a-15b+25\right)⋮7\)
\(\Rightarrow\left(10a+35a-15b+28b+25-14\right)⋮7\)
\(\Rightarrow\left(45a+13b+11\right)⋮7\)(đpcm)