K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2019

Số không nhiều lắm, có thể giải trâu:

\(a=1.2.3.2^2.5.2.3.2^3.7.3^2.2.5.2^2.3.2.7.3.5.2^4.11.13.17\)

\(a=2^{15}.3^6.5^3.7^2.11.13.17=\left(2^5.3^2.5\right)^3.7^2.11.13.17\)

Vậy số cần tìm là \(\left(2^5.3^2.5\right)^3=1440^3=...\)

1 tháng 12 2021

​n-]bú\bị[ ù- laf 

1 tháng 12 2021

giả sử ta có n số tự nhiên liên tiếp từ 1 đến n

nếu xóa số 1 thì trung bình cộng của các số còn lại là :

2+3+...+nn−1=(2+n)(n−1)2(n−1)=2+n22+3+...+nn−1=(2+n)(n−1)2(n−1)=2+n2

nếu xóa số n thì trung bình cộng của các số còn lại là :

1+2+...+(n−1)n−1=n(n−1)2(n−1)=n21+2+...+(n−1)n−1=n(n−1)2(n−1)=n2

Ta có : n2≤35717≤n+22⇔n≤701417≤n+2⇔681417≤n≤701417n2≤35717≤n+22⇔n≤701417≤n+2⇔681417≤n≤701417

do n thuộc N nên n = 69 hoặc n = 70

với n = 70, tổng của 69 số còn lại là : 35717.6935717.69  ∉∉N,loại

với n = 69, tổng của 68 số còn lại là : 35717.68=240835717.68=2408

số bị xóa là số : ( 1 + 2 + ... + 69 ) - 2408 = 2415 - 2408 = 7

đây ô nha

23 tháng 9 2020

Giả sử bốn số tự nhiên liên tiếp là: \(a-1;a;a+1;a+2\)\(\left(a\inℕ^∗\right)\)

Tích của bốn số đó cộng thêm 1 là: \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)

Đặt \(a^2+a=x\)\(\Rightarrow\left(a^2+a-2\right)\left(a^2+a\right)+1=x\left(x-2\right)+1=x^2-2x+1=\left(x-1\right)^2\)là số chính phương

23 tháng 9 2020

Gọi 4 số tự nhiên liên tiếp đó là : \(a,a+1,a+2,a+3\left(a\inℕ^∗\right)\)

Ta có :

\(a.\left(a+1\right).\left(a+2\right).\left(a+3\right)+1\)

\(=\left[a.\left(a+3\right)\right].\left[\left(a+1\right)\left(a+2\right)\right]+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

\(=\left(a^2+3a\right)^2+2.\left(a^2+3a\right)+1\)

\(=\left(a^2+3a+1\right)^2\) là một số chính phương

\(\Rightarrowđpcm\)

13 tháng 9 2015

Gọi 4 số tự nhiên liên tiếp đó là: n-1;n;n+1;n+2 (n>0)

theo đề lập phương của một số bằng tổng các lập phương của 3 số kia

=>số mà lập phương lên bằng tổng các lập phương của 3 số kia phải lớn nhất

=>số đó là n+2

Ta có phương trình: 

(n+2)3=n3+(n-1)3+(n+1)3

<=>n3+6n2+12n+8=n3+n3-3n2+3n-1+n3+3n2+3n+1

<=>n3+6n2+12n+8=3n3+6n

<=>3n3-n3-6n2+6n-12n-8=0

<=>2n3-6n2-6n-8=0

<=>2n3-8n2+2n2-8n+2n-8=0

<=>2n2.(n-4)+2n.(n-4)+2.(n-4)=0

<=>2.(n-4)(n2+n+1)=0

Vì n2+n+1\(\ge\)0 với mọi x nên:

n-4=0

<=>n=4

Vậy 4 số cần tìm là: 3;4;5;6