K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

 1345432+1236346 = 2581778

1 tháng 8 2020

2581778

12 tháng 12 2017

Đáp án: C

A: “ số 20 chia hết cho 5” là mệnh đề đúng.

B: “ số  25 chia hết cho 3” là mệnh đề sai.

C: “số 13 là số nguyên tố” là mệnh đề đúng.

C đúng, A đúng nên C  A đúng

 A đúng, B sai nên (C  A)⇒ B là mệnh đề sai.

11 tháng 6 2018

Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.

Do đó ta phải xét các phương án

- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.

- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.

- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.

Đáp án: C

14 tháng 12 2023

TH1: Hàng đơn vị là 0

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)

TH2: Hàng đơn vị là 5

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)

Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)

Đáp số: 3150 số thoả mãn

27 tháng 6 2023

 

    1. 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
    2.  

    Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i  0 với mọi i sao cho 1  i  6.

    • Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i  0.
    • Giả sử với mọi i sao cho 1  i  k (với k  5), đều có a_i  0. Ta sẽ chứng minh rằng a_(k+1)  0.

    Nếu a_k  0, a_(k+1)  0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.

    Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1)  0.

    Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.

    1. 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
    • Với a, b, c bất kỳ, ta có ab, bc, ca  0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
    • Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.

    Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.

    Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.

    Nếu b và c đều khác 0, ta có:

    bc, ca, ab  1

    Do đó, trong 3 số bc, ca, ab, không có số nào bằng 0. Khi đó, ta có:

    b(bc)ca=ab

    Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có

    10:06
18 tháng 4 2019

Chọn B

Dựa vào bảng số liệu đã cho ta thấy các giá trị chênh lệch nhau nhiều (gấp 6 lần) nên số đại diện tốt nhất cho mẫu số liệu là số trung vị.

Tập A gồm gì vậy bạn?

18 tháng 3 2023

{1,2,3,5,6} ạ