Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.
Bây h ta cần CM 1 trong 3 số chia hết cho 3:
_n=3k(k là số tn) thì n chia hết cho 3(đpcm)
_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)
_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)
Vậy n(n+1)(2n+1) chia hết cho 6
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Bài 1 :
Có : P = n^2+n+2 = n.(n+1)+2
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp
=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6
=> P có tận cùng là : 2 hoặc 4 hoặc 8
=> P ko chia hết cho 5
=> ĐPCM
Tk mk nha
Bài 2 :
Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6
= a.(a+1).(a+2)/6
Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 2 và 3
=> a.(a+1).(a+2) chia hết cho 6
=> A thuộc Z
Tk mk nha
Có: \(n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là 4 số tự nhiên liên tiếp nên chia hết cho 120
\(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)
\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét ước
\(n^2+1⋮n+2\)
\(\Rightarrow n^2+2n-2n+1⋮n+2\)
\(\Rightarrow n^2+2n-2n-4+5⋮n+2\)
\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)
\(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét ước
\(\dfrac{n^2-3n+2}{n+1}\)
\(\Rightarrow n^2-3n+2⋮n+1\)
\(\Rightarrow n^2+n-4n+2⋮n+1\)
\(\Rightarrow n^2+n-4n-4+6⋮n+1\)
\(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)
\(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)
\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Xét ước
a) Ta có
\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)
=> 7\(⋮\) 2n + 3
Do n \(\in\) Z nên 2n + 3 \(\in\) Z
=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2
Ta có bảng
n | 2n + 3 | So với điều kiện n\(\in\) Z |
-1 | 1 | Thỏa mãn |
2 | 7 | Thỏa mãn |
-2 | -1 | Thỏa mãn |
-5 | -7 | Thỏa mãn |
Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm