Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)
\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)
\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)
\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
- Với \(tana=\frac{3-\sqrt{5}}{2}\)
\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)
\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)
\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)
\(sin\left(2\pi+a\right)=sina=...\)
\(tan\left(\pi-a\right)=-tana=...\)
\(cot\left(\pi+a\right)=cota=...\)
TH2: \(tana=\frac{3+\sqrt{5}}{2}\)
Tương tự như trên
Câu 1:
\(tan\left(a+\frac{\pi}{4}\right)=1\Rightarrow a+\frac{\pi}{4}=\frac{\pi}{4}+k\pi\Rightarrow a=k\pi\) (\(k\in Z\) )
Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow\frac{\pi}{2}< k\pi< 2\pi\Rightarrow\frac{1}{2}< k< 2\Rightarrow k=1\Rightarrow a=\pi\)
\(\Rightarrow P=cos\left(\pi-\frac{\pi}{6}\right)+sin\pi=-\frac{\sqrt{3}}{2}\)
Câu 2:
\(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}=cot\left(-\frac{\pi}{6}\right)\)
\(\Rightarrow a+\frac{\pi}{3}=-\frac{\pi}{6}+k\pi\Rightarrow a=-\frac{\pi}{2}+k\pi\) (\(k\in Z\))
\(\Rightarrow\frac{\pi}{2}< -\frac{\pi}{2}+k\pi< 2\pi\Rightarrow-\pi< k\pi< \frac{5\pi}{2}\)
\(\Rightarrow-1< k< \frac{5}{2}\Rightarrow k=\left\{0;1;2\right\}\Rightarrow a=\left\{-\frac{\pi}{2};\frac{\pi}{2};\frac{3\pi}{2}\right\}\) \(\Rightarrow cosa=0\)
\(\Rightarrow P=sin\left(\pi+\frac{\pi}{6}\right)+0=-sin\frac{\pi}{6}=-\frac{1}{2}\)
Vậy đáp án sai
Bạn thay thử \(a=\frac{3\pi}{2}\) vào biểu thức ban đầu coi có đúng \(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\) ko là biết đáp án đúng hay sai liền mà
\(\frac{a}{2}\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow tan\frac{a}{2}< 0\) ; \(sin\frac{a}{2}>0;cos\frac{a}{2}< 0\)
Đặt \(tan\frac{a}{2}=x< 0\)
\(\frac{2x}{1-x^2}=3\Leftrightarrow3x^2+2x-3=0\Rightarrow tan\frac{a}{2}=x=\frac{-1-\sqrt{10}}{3}\)
\(tan2a=\frac{2tana}{1-tan^2a}=\frac{6}{1-9}=-\frac{3}{4}\)
\(tan4a=\frac{2tan2a}{1-tan^22a}=-\frac{24}{7}\)
\(cos\frac{a}{2}=-\frac{1}{\sqrt{1+tan^2\frac{a}{2}}}=\) số thật kinh khủng
\(sin\frac{a}{2}=\sqrt{1-cos^2\frac{a}{2}}=...\)
\(sin\left(\frac{a}{2}+\frac{\pi}{2}\right)=\sqrt{2}\left(sin\frac{a}{2}+cos\frac{a}{2}\right)=...\)
\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)
\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)
a/ \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos\alpha=\pm\frac{\sqrt{5}}{3}\)
\(\alpha\in\) góc phần tư thứ 3=> \(\cos\alpha=-\frac{\sqrt{5}}{3}\)
\(\tan\left(\alpha+\pi\right)=\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{\sqrt{5}}\)
b/ Nếu bạn học công thức này rồi thì áp dụng vô
\(\sin\left(\alpha+\frac{3\pi}{2}\right)=\sin\alpha.\cos\frac{3\pi}{2}+\cos\alpha.\sin\frac{3\pi}{2}\)
\(\cos\frac{3\pi}{2}=\cos\left(\pi+\frac{\pi}{2}\right)=-\cos\frac{\pi}{2}=0\)
\(\sin\frac{3\pi}{2}=-\sin\frac{\pi}{2}=-1\)
\(\Rightarrow\sin\left(\alpha+\frac{3\pi}{2}\right)=\frac{\sqrt{5}}{3}\)