Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia cả tử và mẫu cho \(cosa\)
\(D=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}=3\)
Có \(\sin^2a+\cos^2a=1\)\(\Leftrightarrow\sin^2a=1-\cos^2a=1-\left(\frac{1}{3}\right)^2=\frac{8}{9}\)
\(\Leftrightarrow\sin a=\frac{\sqrt{8}}{3}\)
Xét \(B=\frac{\sin a-3\cos a}{\sin a+2\cos a}=\frac{\frac{\sqrt{8}}{3}-3\cdot\frac{1}{3}}{\frac{\sqrt{8}}{3}+2\cdot\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)
\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)
\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)
\(=\frac{\left(\sin a+\cos a-\sin a+\cos a\right)\left(\sin a+\cos a+\sin a-\cos a\right)}{\sin a.\cos a}=\frac{2.\cos a.2.\sin a}{\sin a.\cos a}=4\)
\(\dfrac{\left(cosa-sina\right)^2-\left(cosa+sina\right)^2}{cosa\cdot sina}\)
\(=\dfrac{\left(cosa-sina-cosa-sina\right)\left(cosa-sina+cosa+sina\right)}{cosa\cdot sina}\)
\(=\dfrac{-2\cdot sina\cdot2\cdot cosa}{cosa\cdot sina}=-4\)
\(\sin\alpha=4\cos\alpha\Leftrightarrow\cos\alpha=\dfrac{1}{4}\sin\alpha\)
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\sin^2\alpha+\left(\dfrac{1}{4}\sin\alpha\right)^2=1\\ \Leftrightarrow\sin^2\alpha+\dfrac{1}{16}\sin^2\alpha=1\\ \Leftrightarrow\dfrac{17}{16}\sin^2\alpha=1\\ \Leftrightarrow\sin^2\alpha=\dfrac{16}{17}\)
Vì \(\alpha\) là một góc nhọn => \(\alpha>0\) => \(\sin\alpha=\sqrt{\dfrac{16}{17}}=\dfrac{4\sqrt{17}}{17}\)
\(\cos\alpha=\dfrac{1}{4}\sin\alpha=\dfrac{1}{4}.\dfrac{4\sqrt{17}}{17}=\dfrac{\sqrt{17}}{17}\)
Vậy \(P=3\sin\alpha.\cos\alpha=3.\dfrac{4\sqrt{17}}{17}.\dfrac{\sqrt{17}}{17}=\dfrac{12}{17}\)