\(\dfrac{1}{5}\). Hãy tính các tỉ số lượng giác còn lại của góc a

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\cos\alpha=\sqrt{1-\dfrac{1}{25}}=\dfrac{2\sqrt{6}}{5}\)

\(\tan\alpha=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

\(\cot\alpha=1:\dfrac{1}{2\sqrt{6}}=2\sqrt{6}\)

24 tháng 7 2018

a) sin a=0,8

Ta có: \(\sin^2a+\cos^2a=1\)

\(\Rightarrow\cos^2a=1-\sin^2a=1-0,8^2=0,36\)

\(\Rightarrow\orbr{\begin{cases}\cos a=0,6\\\cos a=-0,6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\tan a=\frac{4}{3}\\\tan a=\frac{-4}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\cot a=\frac{3}{4}\\\cot a=\frac{-3}{4}\end{cases}}\)

24 tháng 7 2018

\(\sin a=0,8\)

\(\sin^2a=1-\sin^2a=1\)

\(\cos^2a=1-\sin^2a=1-0,8^2=0,36\)

\(\Rightarrow\hept{\begin{cases}\cos a=0,6\\\cos a=-0,6\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\tan a=\frac{4}{3}\\\tan a=\frac{-4}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\cot a=\frac{3}{4}\\\cot a=\frac{-3}{4}\end{cases}}\)

Code : Breacker

21 tháng 8 2017

Làm tiêu biểu 1 bài thôi nhé. Các bài còn lại tương tự

a/ sin a = 0,8

Ta có: sin2 a + cos2 a = 1

=> cos2 a = 1 - sin2 a = 1 - 0,82 = 0,36

\(\Rightarrow\orbr{\begin{cases}cos\:a=0,6\\cos\:a=-0,6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}tan\:a=\frac{4}{3}\\tan\:a=-\frac{4}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}cot\:a=\frac{3}{4}\\cot\:a=-\frac{3}{4}\end{cases}}\)             

17 tháng 4 2017

Xem lại chương lượng giác trong tam giác vuông nhé

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

24 tháng 4 2017

hinh 37

a) Sin α = b/ a ; Cos α = c / a

Tg α = b / c ; Cotg α = c / b

b) Sin β = Cos α ; Cos β = Sin α

Tg β = Cotg α ; Cotg β = Tg α

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

21 tháng 9 2015

A B C H

21 tháng 9 2015

Kẻ Đường cao AH 

Tam giác AHB vuông tại H 

=> \(sinB=\frac{AH}{AB}\) (1)

tam giác AHC vuông tại H 

=> \(sinC=\frac{AH}{AC}\) (2)

Từ (1) và (2) => \(\frac{sinB}{sinC}=\frac{AH}{AB}:\frac{AH}{AC}=\frac{AC}{AB}\)

=> \(\frac{AC}{sinB}=\frac{AB}{sinC}\)  (*)

CMTT : \(\frac{BC}{sinA}=\frac{AB}{sinC}\) (**)

          \(\frac{BC}{sinA}=\frac{AC}{sinB}\) (***)

Từ (*) và (**) (***) => \(\frac{BC}{sinA}=\frac{AC}{sinB}=\frac{AB}{sinC}\)

24 tháng 4 2017

Hướng dẫn giải:

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.