K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Ta có:

\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\left(có30số\right)\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}\cdot30=\frac{1}{2}< \frac{4}{5}\)\(\Rightarrow S< \frac{4}{5}\)

30 tháng 10 2016

 

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{49}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\frac{1}{40}.10+\frac{1}{50}.10+\frac{1}{60}.10< S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50.10}\)

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)

\(\frac{1}{4}+\frac{1}{5}+\frac{3}{20}< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{1}{3}+\frac{4}{15}+\frac{1}{5}\)

\(\frac{3}{5}< S< \frac{4}{5}\left(đpcm\right)\)

 

24 tháng 5 2018

Ta thấy S có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 10 số hạng

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)\(S< \frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)    ( 1 )

\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

\(S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\);     \(S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)  ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\)

25 tháng 5 2019

Nhác quá ko muốn đánh lại nx,bạn tham khảo tại đây:

Câu hỏi của nuy - Toán lớp 6 - Học toán với OnlineMath

2 tháng 8 2018

\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)

\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)

Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)

Vậy \(A>B.\)

Chúc bạn học tốt.

18 tháng 12 2016

lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?

18 tháng 12 2016

ĐANG CẦN GẤP

16 tháng 12 2019

S>2

 nhân s với 2

lấy 2 S - S = 1+ 1/2 + 1/22015

:)) HD thui

16 tháng 12 2019

Ta có: \(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}...+\frac{1}{2^{2014}}\)

\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(2S-S=2-\frac{1}{2^{2014}}\)

Hay \(S=2-\frac{1}{2^{2014}}< 2\)

Suy ra: \(S< 2\)

_Học tốt_