\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Ta có :

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+..............+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...............+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}< 1\)

\(\Rightarrow S< 1\rightarrowđpcm\)

9 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)

\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{40.43}+\dfrac{1}{43.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}=\dfrac{45}{46}\)

\(\dfrac{45}{46}< 1\)

=> \(S< 1\)

17 tháng 5 2018

\(^{\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}=\frac{45}{46}\)

Vì \(1-\frac{1}{46}< 1\)nên \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}< 1\)

Chúc bạn học tốt

17 tháng 5 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(S=1-\frac{1}{43}\)

\(S=\frac{42}{43}< 1\)

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

19 tháng 4 2019

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(s=1-\frac{1}{46}< 1\)

Vậy S<1

19 tháng 4 2019

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{43\cdot46}\)

\(S=1\left[\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{43\cdot46}\right]\)

\(S=1\left[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\right]\)

\(S=1\left[1-\frac{1}{46}\right]=1\cdot\frac{45}{46}=\frac{45}{46}< 1(đpcm)\)

5 tháng 8 2017

A = \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{13.16}\)

\(A=1-\left(\dfrac{1}{4}+\dfrac{1}{4}\right)-\left(\dfrac{1}{7}+\dfrac{1}{7}\right)-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)

\(A=1-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)

(13 - 10 = 3 ; 16 - 13 = 3)

\(3A=1-\dfrac{1}{16}\)

\(=\dfrac{15}{16}\)

Vậy ... tự tìm a đi! Lười quá!

Bài 2: Dễ ; tự làm

Bài3: Áp dụng tính chất phép cộng ta có:

a + b = b + a

=> A và B có phép tính giống nhau chỉ đổi chỗ

Không mất công tính.

Ta có thể kết luận phép tính trên bằng nhau

7 tháng 8 2017

bạn ơi bài 2 dễ quá đi ha viết luận nữa đó

30 tháng 4 2017

Đăt :

\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+.........+\dfrac{2}{49.51}\)

\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..........+\dfrac{3}{49.51}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+.........+\dfrac{1}{49}-\dfrac{1}{51}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{51}\)

\(\dfrac{3}{2}A=\dfrac{50}{51}\)

\(\Rightarrow A=\dfrac{50}{51}:\dfrac{3}{2}=\dfrac{100}{153}\)

1 tháng 5 2017

Ta có công thức nha sau :

\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)

Ta gọi biểu thức phân số là A

Vậy \(\dfrac{2}{1.4}=\dfrac{2}{4-1}.\left(1-\dfrac{1}{4}\right)\)

\(\dfrac{2}{4.7}=\dfrac{2}{7-4}.\left(\dfrac{1}{4}-\dfrac{1}{7}\right)\)

\(\dfrac{2}{7.10}=\dfrac{2}{10-7}.\left(\dfrac{1}{7}-\dfrac{1}{10}\right)\)

Ta thấy 50 - 49 = 1 , không bằng những biểu thức kia bằng 3 nên ta tách những biểu thức đó ra.

A= \(\dfrac{2}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}\right)+\dfrac{2}{49.50}\)

\(A=\dfrac{2}{3}.\left(1-\dfrac{1}{10}\right)+2.\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(A=\dfrac{18}{30}+\left(\dfrac{1}{1225}\right)=\dfrac{736}{1225}\)

mink chắc chắn, ủng hộ nha

11 tháng 4 2018

Giải:

\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{3}-\dfrac{1}{10}\)

\(=\dfrac{7}{30}\)

Vậy ...

11 tháng 4 2018

\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

=\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

=\(\dfrac{1}{3}-\dfrac{1}{10}\)

=\(\dfrac{7}{30}\)

9 tháng 5 2018

bạn chép gì vậy????hay là não bạn có vấn đề?

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

2 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...................+\dfrac{3}{n\left(n+1\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.............+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow S=1-\dfrac{1}{n+1}< 1\)

\(\Rightarrow S< 1\rightarrowđpcm\)

2 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n.\left(n+1\right)}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}\)\(< 1\)

\(\Leftrightarrow S< 1\)

tik cho mik nhé