Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)
Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)
Ta có \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};...;\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)
Do đó \(a< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}=1+\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(=1+1-\dfrac{1}{n}=1-\dfrac{1}{n}< 2\) . Suy ra \(1< a< 2\)
Vậy \(a\) khôg phải số tự nhiên
Ta có: `1 < 1 + 1/2^2 + ... + 1/n^2`
`1/(2.2) < 1/(1.2)`
`1/(3.3) < 1/(2.3)`
`...`
`1/(n^2) < 1/(n-1(n))`
`=> 1/2^2 + ... + 1/n^2 < 1/(1.2) + ... + 1/(n-1(n)) = 1/1 - 1/n < 1`.
`=> a < 1 + 1 = 2`.
`=> 1 < a < 2`.
`=>` Đây không là số tự nhiên.
\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)
\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)
Lại có:
\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)
\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)
\(\Rightarrow S< 2\) (2)
Từ (1), (2) \(\Rightarrow1< S< 2\)
\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên
\(S_n=1-\dfrac{1}{n^2}\) xét tổng \(U_n=\dfrac{1}{n^2}\) với n >=2
cơ bản có \(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)
<=>\(U< 1-\dfrac{1}{n-1}\)
cơ bản có \(\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
<=>\(U>1-\dfrac{1}{n+1}\)
<=>\(1-\dfrac{1}{n-1}< U< 1-\dfrac{1}{n+1}\)
với n >2 => 1/(n-1) ; 1/(n+1) là hai phân số <1
=> U không phải là số nguyên
=> S không là số nguyên => dpcm
\(S=\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{2017}{2^{2016}}\)
\(\Rightarrow2S=2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2017}{2^{2015}}\)
\(\Rightarrow2S-S=\left(2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2017}{2^{2015}}\right)-\left(\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{2017}{2^{2016}}\right)\)
\(\Leftrightarrow S=2+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2017}{2^{2016}}\)
Tới đây thì đơn giản rồi nhé
baì1 k=1 có tập số nguên tố . 2;3;5;7;11=5 ptử. với k>1 trong 10 số liên tiếp có 5 số chẵn và 5 số lẻ trong 5 số lẻ ít nhất có hai số chia hết cho 3. vậy với k >1 tập hợp số ntố <5 phân tử. kết luận k=1
\(S=\dfrac{1^2}{1}-\dfrac{1}{1}+\dfrac{2^2}{2^2}-\dfrac{1}{2^2}+...+\dfrac{n^2}{n^2}-\dfrac{1}{n^2}\)
\(S=1-\dfrac{1}{1}+1-\dfrac{1}{2^2}+...+1-\dfrac{1}{n^2}\)
\(S=n-\left(\dfrac{1}{1}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)=n-A\)
Xét \(A=\dfrac{1}{1}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}=1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}>1\) (1)
\(A=\dfrac{1}{1}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1}+\dfrac{1}{1.2}+...+\dfrac{1}{\left(n-1\right)n}\)
\(\Rightarrow A< \dfrac{1}{1}+\dfrac{1}{1}-\dfrac{1}{2}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=2-\dfrac{1}{n}< 2\) (2)
Từ (1),(2) \(\Rightarrow1< A< 2\Rightarrow A\) nằm giữa 2 số nguyên liên tiếp nên A không phải là số nguyên.
Mà \(S=n-A\), do \(n\) nguyên, \(A\) không nguyên \(\Rightarrow S\) không nguyên
Lời giải:
$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$
\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)
\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)
Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy
\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$
Mặt khác:
\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(M< 1+1-\frac{1}{n}< 2\)
Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.
Cảm ơn thầy ạ