K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

biểu thức đâu mà sao cậu không dùng kĩ hiệu toán học cho dễ nhìn ấy chứ nhìn thế này dịch mãi mới ra 

1 tháng 10 2017

the cậu ra chưa

11 tháng 9 2017

\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

mà a+b=c+d <=> a-c=d-b <=>  \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

TH1: a-c\(\ne0\)<=>a+c=d+b<=>a-b=d-c cộng vế với vế với a+b=c+d (gt) <=> 2a=2d <=> a=d <=> b=c

=>a2006=d2006;b2006=c2006=>a2006+b2006=c2006+d2006

TH2: a-c=0 <=> a=c <=> b=d <=> a2006+b2006=c2006+d2006

Từ 2 trường hợp trên suy ra đpcm

1 tháng 5 2018

Ta có:

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(lđ\right)\)

=> ĐPCM

31 tháng 7 2017

Vì a+b+c=0

\(\Rightarrow a=-\left(b+c\right)\)

\(\Rightarrow a^2=\left[-\left(b+c\right)\right]^2=b^2+2bc+c^2\)

Do đó  \(\frac{1}{b^2+c^2-a^2}=\frac{1}{b^2+c^2-b^2-2bc-c^2}=-\frac{1}{2bc}\)

Tương tự  \(\frac{1}{c^2+a^2-b^2}=-\frac{1}{2ca}\)  và  \(\frac{1}{a^2+b^2-c^2}=-\frac{1}{2ab}\)

Do đó  \(S=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)