Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không Vì A chia hết cho 5 hiển nhiên
nhưng A chia cho 25 dư 5=> không thể là số Cp
Số chia hết cho 5 nhưng không chia hết cho 25 ( 5^2) thì không phải là số chính phương . Vậy A là số chính phương khi A chia hết cho 5^2 tức là các số hạng của A đều chia hết cho 5^2 . Bạn phải hiểu nhé !
Ta có : 5^2 chia hết cho 5^2 , 5^3 chia hết cho 5^2 ,...5^101 chia hết cho 5^2
mà 5 không chia hết cho 5^2 nên A không phải là số chính phương
Vậy A không phải là số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
S = 1 + 3 + 5 + 7 + .... + ( 2n + 1 )
Ta có:
SSH: (Số đầu - số cuối) : khoảng cách +1
S = [(2n+1) - 1] : 2 + 1= n+1
Tổng: (số đầu + số cuối) x số số hạng : 2
S= [1+ (2n+1)](n+1) : 2
S= (2n+2):2 (n+1)
S= (n+1)(n+1)
S= \(\left(n+1\right)^2\)
\(\Rightarrow\) S là số chính phương.
Vậy S là số chính phương.
vì 5^2;5^3;5^4;...;5^100 chia hết cho 5^2
mà 5 ko chia hết cho 5^2
=> A ko chia hết cho 5^2 mà 5^2 là SCP
=> A ko phải là số chính phương
A là số chính phương:
A=5+52+53+...+5100
=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)
=5.6+53.6+55.6+...+599.6
=6.(5+53+55+57+...+599)
Vì 6 là số chính phương nên A là số chính phương
a. Ta có: A = 5 + 5^2 + 5^3 +....+ 5^100
⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100 ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5
⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6
A = 6. 5 + 5 3 + ... + 5^99 chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số
b,A không hải số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 5198)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
Mình lỡ tay,Mình giải lại:
S=\(5+5^2+5^3+...+5^{100}=5+\left(5^2+5^3+...+5^{100}\right)\)
S=\(5+5^2\left(1+5+...+5^{98}\right)=5+25\left(1+5+...+5^{98}\right)\)
Vì 25 chia hết cho 25 nên \(25\left(1+5+...+5^{98}\right)\)chia hết cho 25
Mà 5 ko chia hết cho 25 nên \(5+25\left(1+5+...+5^{98}\right)\)ko chia hết cho 25
Hay S ko chia hết cho 25 (1)
Mà tất cả các số hạng của S là lũy thừa của 5 và có số mũ >0 nên S chia hết cho 5 (2)
Mà số chính phương chia hết cho 5 thì chia hết cho 25 (3)
Từ (1);(2) và (3) => S ko là số chính phương
Vậy S ko là số chính phương
tick nha!!!
S là SCP ( vì SCP có thể tận cùng bằng:1,4,5,6,9 mà S tận cùng là 5 suy ra S là SCP)