K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt

4 tháng 7 2017

bạn ghi thế này tớ k hiểu

4 tháng 7 2017

Tớ ghi giống y hệt đề mà

29 tháng 11 2018

a)

    \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)

b)

Tính S:

\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)

\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.

c)

  Ta có \(S=\frac{3^{2017}-3}{2}\)

\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)

Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0

9 tháng 6 2019

\(S=3+3^2+3^3+3^4+...+3^{2016}\)

\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2017}-3\)

\(S=\frac{3^{2017}-3}{2}\)

Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)

Vậy 2S + 3 là một lũy thừa của 3 (đpcm) 

17 tháng 10 2016

a)\(S=1+3+...+3^{11}\)

\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=1\cdot13+...+3^9\cdot13\)

\(=13\cdot\left(1+...+3^9\right)⋮13\)

b)\(S=1+3+...+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)

\(=1\cdot40+...+3^8\cdot40\)

\(=40\cdot\left(1+...+3^8\right)⋮40\)

 

17 tháng 10 2016

c)\(S=1+3+...+3^{11}\)

\(3S=3\left(1+3+...+3^{11}\right)\)

\(3S=3+3^2+...+3^{12}\)

\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)

\(2S=3^{12}-1\)

\(S=\frac{3^{12}-1}{2}\)

11 tháng 11 2016

A=\(17^{2008}-11^{2008}-3^{2008}\)

A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)

A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)

A=\(\left(.........9\right)\)

Vậy A có chữ số tận cùng là 9

11 tháng 11 2016

2)M=\(17^{25}+24^4-13^{21}\)

M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)

M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)

M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)

M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)

M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)

M=\(\left(...........0\right)⋮10\)

Vậy M\(⋮10\)

7 tháng 5 2016

\(S=2\left(1+2+2^2+2^3+...+2^{99}\right)\)

\(\Rightarrow S=2\left[\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\right]\)

\(\Rightarrow S=6\left(1+2^2+2^4+...+2^{98}\right)\)chia hết cho 3                            (1)

\(S=2\left[\left(1+2^2\right)+2\left(1+2^2\right)+...+2^{96}\left(1+2^2\right)+2^{97}\left(1+2^2\right)\right]\)

\(\Rightarrow S=2.5\left(1+2+2^2+...+2^{97}\right)\)chia hết cho 5                           (2)

Từ (1) và (2) suy ra S chia hết cho 15 (vì 3.5=15 và ƯCLN(3,5)=1)