\(Cho \) \(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2019

\(S=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)

\(S< 1+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

\(S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(S< 1+2\left(\sqrt{100}-\sqrt{1}\right)=19\)

\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)

\(S>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)

\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)

\(\Rightarrow18< S< 19\Rightarrow S\) ko là số tự nhiên

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Liên hợp ta thấy:

\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)

\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)

Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)

------------------------

Áp dụng vào bài toán:

\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)

\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)

Và:

\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)

\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)

Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)

20 tháng 10 2018

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

16 tháng 11 2018

mèo conavt2714691_60by60.jpg

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến

23 tháng 7 2016

trước hết ta chứng minh bất đẳng thức tổng quát : với n là số tự nhiên lớn hơn 1 thì :

2√n−2<1+1√2+1√3+...+1√n<2√n−12n−2<1+12+13+...+1n<2n−1 (∗)(∗)

xét số hạng thứ kk trong dãy (2≤k≤n)(2≤k≤n) ta có : 1√k>2√k+√k+1=2(√k+1−√k)1k>2k+k+1=2(k+1−k) và 1√k<2√k+√k−1=2(√k−√k−1)1k<2k+k−1=2(k−k−1)

do đó 1+1√2+...+1√n>2(√2−1+√3−√2+...+√n+1−√n)=2(√n+1−1)>2√n−21+12+...+1n>2(2−1+3−2+...+n+1−n)=2(n+1−1)>2n−2

và  1+1√2+...+1√n<1+2(√2−1+√3−√2+...+√n−√n−1)=1+2(√n−1)=2√n−11+12+...+1n<1+2(2−1+3−2+...+n−n−1)=1+2(n−1)=2n−1

đến đây áp dụng (∗)(∗) với n=100n=100 thì 19<a<2019<a<20 nên a không phải là số tự nhiên.

23 tháng 7 2016

trước hết ta chứng minh bất đẳng thức tổng quát : với n là số tự nhiên lớn hơn 1 thì :

2√n−2<1+1√2+1√3+...+1√n<2√n−12n−2<1+12+13+...+1n<2n−1 (∗)(∗)

xét số hạng thứ kk trong dãy (2≤k≤n)(2≤k≤n) ta có : 1√k>2√k+√k+1=2(√k+1−√k)1k>2k+k+1=2(k+1−k) và 1√k<2√k+√k−1=2(√k−√k−1)1k<2k+k−1=2(k−k−1)

do đó 1+1√2+...+1√n>2(√2−1+√3−√2+...+√n+1−√n)=2(√n+1−1)>2√n−21+12+...+1n>2(2−1+3−2+...+n+1−n)=2(n+1−1)>2n−2

và  1+1√2+...+1√n<1+2(√2−1+√3−√2+...+√n−√n−1)=1+2(√n−1)=2√n−11+12+...+1n<1+2(2−1+3−2+...+n−n−1)=1+2(n−1)=2n−1

đến đây áp dụng (∗)(∗) với n=100n=100 thì 19<a<2019<a<20 nên a không phải là số tự nhiên.

1 tháng 1 2016

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng BĐT ta có :

\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2500}}=2\left(\sqrt{2501}-\sqrt{2500}+\sqrt{2500}-\sqrt{2499}+....+\sqrt{2}-\sqrt{1}\right)\)

                                                                       \(=2\left(\sqrt{2501}-1\right)>2\left(\sqrt{2500}-1\right)=2.49=98\) (1)

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

ÁP dụng BĐT ta có :

\(A-1<2\left(\sqrt{2500}-\sqrt{2499}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-1\right)=2\left(\sqrt{2500}-1\right)=98\)

=> A  < 98 + 1 =99  (2)

Từ (1) và (2) => 98 < A < 99 

=> A không thể là số tự nhiên 

 

\(A<2\left(\sqrt{2500}-\sqrt{2499}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}-0\right)\)

   

1 tháng 1 2016

Vì 

\(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{3}};\frac{1}{\sqrt{4}}....\) đều là số vô tỉ

Mà 1 là số hữu tỉ

=>\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\) là một số vô tỉ 

Hay A ko phải là 1 số tự nhiên

Tick cho mình nha bạn.Nhân dịp năm mới chúc bạn mạnh khoẻ,vui vẻ,học giỏi nha.

Còn nhớ tui là ai nữa ko bạn???