K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

gọi biểu thức trên là A. Ta có:

\(2A=2\left(1^2+...+1^{100}\right)\)

\(=2+2^2+...+2^{101}\)

\(2A-A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(A=2^{101}-1\)

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM

DD
16 tháng 1 2021

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)

\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)

\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\).

22 tháng 3 2021

à há mình ko biết

16 tháng 4 2017

 S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
 S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
 S-P= 0
Suy ra (S-P)^2013 = 0

15 tháng 1 2018

Ko hiểu